Теорема умножения вероятностей несовместных событий. Независимость событий

Тип занятия: изучение нового материала.
Учебно-воспитательные задачи:
- дать понятие о случайном событии, вероятности события;
- научить вычислять вероятности события; вероятности случайных событий по классическому определению;
- научить применять теоремы сложения и умножения вероятностей для решения задач;
- продолжать формировать интерес к математике посредством решения задач с применением классического определения вероятности для непосредственного подсчета вероятностей явлений;
- прививать интерес к математике, используя исторический материал;
- воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений.

Обеспечение занятия:
- карточки-задания для индивидуального опроса;
- карточки-задания для проверочной работы;
- презентация.

Студент должен знать:
- определения и формулы числа перестановок, размещений и сочетаний;
- классическое определение вероятности;
- определения суммы событий, произведения событий; формулировки и формулы теорем сложения и умножения вероятностей.

Студент должен уметь:
- вычислять перестановки, размещения и сочетания;
- вычислять вероятность события используя классическое определение и формулы комбинаторики;
- решать задачи на применение теорем сложения и умножения вероятностей.

Мотивация познавательной деятельности студентов.
Преподаватель сообщает, что возникновение теории вероятностей относится к середине XVII в. и связанно с исследованием Б. Паскаля, П. Ферма и Х.Гюйгенса (1629-1695) . Крупный шаг в развитии теории вероятности связан с работами Я.Бернулли (1654-1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей - законом больших чисел. Следующий этап в развитии теории связан с именами А.Муавра (1667-1754) , К. Гаусса, П. Лапласа (1749-1827) , С.Пуассона (1781-1840). Среди ученых Петербургской школой следует назвать имена А.М. Ляпунова (1857-1918) и А.А Маркова (1856-1922) . После работ этих математиков во всем мире теорию вероятностей стали называть “Русской наукой”. В средине 20-х годов А.Я. Хинчин (1894-1959) и А.Н. Колмогорова создали Московскую школу теории вероятностей. Вклад акад. А.Н.Колмогоров – лауреата Ленинской премии, международной премии им. Б. Больцано, члена ряда зарубежных академиков – в современную математику огромен. Заслуга А.Н.Колмогорова состоит не только в разработке новых научных теорий, но и еще в большей степени в том, что он воспитал целую плеяду талантливых ученых (акад. АН УССР Б.В. Гнеденко, акад. Ю.В. Прохоров, Б.А. Севастьянов и др.).
Теория вероятностей – математическая наука, изучающая закономерности случайных величин,- за последнее десятилетие превратилась в один из основных методов современных науки и техники. Бурное развитие теории автоматического регулирования привело к необходимости решать многочисленные вопросы, связанные с выяснением возможного хода процессов, на которые влияют случайные факторы. Теория вероятностей необходима широкому кругу специалистов – физикам, биологам, врача, экономистам, инженерам, военным, организаторам производства и т.д.

Ход занятия.

I . Организационный момент.

II . Проверка домашнего задания
Провести фронтальный опрос в виде ответов на вопросы:

Проверить решение упражнений:

  • Сколькими способами можно составить список из 10 человек?
  • Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?
  • 30 учащихся обменялись друг с другом фотокарточками. Сколько всего было роздано фотокарточек?

III . Изучение нового материала.
В толковом словаре С.И. Ожегова и Н.Ю. Шведовой читаем: «Вероятность – возможность исполнения, осуществимости чего-нибудь». Мы часто употребляем в повседневной жизни «вероятно», «вероятнее», «невероятно», вовсе не имея в виду конкретные количественные оценки этой возможности исполнения.
Основатель современной теории вероятностей А.Н. Колмогоров писал о вероятности так: «Вероятность математическая – это числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторяться неограниченное число раз условиях».
Итак, в математике вероятность измеряется числом. Совсем скоро мы выясним, как именно это можно сделать. Но начнем мы с обсуждения того, у каких событий бывает «математическая вероятность» и что представляют собой эти «определенные, могущие повторяться неограниченное число раз условия». Именно поэтому рассмотрим случайные события и случайные эксперименты.
Нужно сказать, что теория вероятностей, как никакая другая область математики, полна противоречий и парадоксов. Объяснение этому очень простое – она слишком тесно связана с реальной, окружающей нас действительностью. Долгое время ее вместе с математической статистикой даже не хотели причислять к математическим дисциплинам, считая их сугубо прикладными науками.
Только в первой половине прошлого века, в основном благодаря трудам нашего великого соотечественника А.Н. Колмогорова, имя которого уже упоминалось выше, были построены математические основания теории вероятностей, которые позволили отделить собственно науку от ее приложений. Подход, предложенный Колмогоровым, теперь принято называть аксиоматическим, поскольку вероятность в нем (а точнее, вероятностное пространство) определяется как некая математическая структура, удовлетворяющая определенной системе аксиом.
Именно на этом подходе построен современный вузовский курс теории вероятностей, через который прошли в свое время все нынешние учителя математики. Однако в школе такой подход к изучению вероятности (да и математики в целом) вряд ли разумен. Если в вузе основной акцент делается на изучении математического аппарата для исследования вероятностных моделей, то в школе ученик должен научиться эти модели строить, анализировать, проверять их адекватность реальным ситуациям. Такую точку зрения разделяют сегодня большинство ученых, занимающихся проблемами школьного математического образования
В современных школьных учебниках можно найти следующее определение: событие называется случайным , если при одних и тех же условиях оно может как произойти, так и не произойти. Случайным будет, например, событие «При подбрасывании игрального кубика выпадет 6 очков».
В приведенном определении неявно подразумевается одно важное требование, которое необходимо подчеркнуть: мы должны иметь возможность неоднократно воспроизводить одни и те же условия, в которых наблюдается данное событие (например, подбрасывать кубик),- иначе невозможно судить о его случайности.
Стало быть, говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом .
В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом . До эксперимента, как правило, невозможно точно сказать, произойдет данное событие, или не произойдет – это выясняется лишь после его завершения. Но неспроста мы сделали оговорку «как правило»: в теории вероятностей принято считать случайными все события, связанные со случайным экспериментом, в том числе:

  • невозможные , которые никогда не могут произойти;
  • достоверные, которые происходят при каждом таком эксперименте.

Например, событие «На игральном кубике выпадет 7 очков» - невозможное, а «На игральном кубике выпадет меньше семи очков» - достоверное. Разумеется, если речь идет о кубике, на гранях которого написаны числа от 1 до 6.
События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании (В урне два шара – белый и черный, появление черного шара не исключает появление белого при том же испытании). События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны. Вероятность события рассматривается как мера объективной возможности появления случайного события.

Обозначения:
Случайные события (большими буквами латинского алфавита): A,B,C,D,.. (или ). “Случайные” опускают и говорят просто “события”.
Число исходов, благоприятствующих наступлению данного события – m;
Число всех исходов (опытов) – n.
Классическое определение вероятности.
Вероятностью события A называется отношение числа исходов m, благоприятствующих наступлению данного события к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.
вероятность случайного события
Вероятность любого события не может быть меньше нуля и больше единицы, т.е. 0≤P(A)≤1
Невозможному событию соответствует вероятность P(A)=0, а достоверному – вероятность P(A)=1

Теоремы сложения вероятностей.
Теорема сложения вероятностей несовместных событий.
Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

P(A+B)=P(A)+P(B);
P(+ +…+=P(+P+…+P().

Теорема сложения вероятностей совместных событий.
Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B)=P(A)+P(B)-P(AB)

Для трех совместных событий имеет место формула:
P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)

Событие, противоположное событию A (т.е. ненаступление события A), обозначают . Сумма вероятностей двух противоположных событий равна единице: P(A)+P()=1

Вероятность наступления события A, вычисленная в предположении, что событие B уже произошло, называется условной вероятностью события A при условии B и обозначается (A) или P(A/B).
Если A и B – независимые события, то
P(B)-(B)=(B).

События A,B,C,… называются независимыми в совокупности, если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой их комбинации.

Теоремы умножения вероятностей.
Теорема умножения вероятностей независимых событий.
Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:
P(AB)=P(A) P(B)

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:
P()=P() P()… P().

Теорема умножения вероятностей зависимых событий.
Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:
P(AB)=P(A) (B)=P(B) (A)

IV . Применение знаний при решении типовых задач
Задача 1.
В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?
Решение: Событие A-билет выигрышный. Общее число различных исходов есть n=1000
Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле P(A)=, получим P(A)== = 0,2 = 0,147

Задача 4 .
В ящике в случайном порядке разложены 20 деталей, причем 5 из них стандартные. Рабочий берет наудачу 3 детали. Найти вероятность того, что по крайней мере одна из взятых деталей окажется стандартной.

Задача 5.
Найти вероятность того, что наудачу взятое двухзначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно

Задача 6.
В одной урне находятся 4 белых и 8 черных шаров, в другой – 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.
Решение: Пусть A - появление белого шара из первой урны, а B – появление белого шара из второй урны. Очевидно, что события A и B независимы. Найдем P(A)=4/12=1/3, P(B)=3/12=1/4, получим
P(AB)=P(A) P(B)=(1/3) (1/4)=1/12=0,083

Задача 7.
В ящике находится 12 деталей, из которых 8 стандартных. Рабочий берет наудачу одну за другой две детали. Найти вероятность того, что обе детали окажутся стандартными.
Решение: Введем следующие обозначения: A – первая взятая деталь стандартная; B – вторая взятая деталь стандартная. Вероятность того, что первая деталь стандартная, составляет P(A)=8/12=2/3. Вероятность того, что вторая взятая деталь окажется стандартной при условии, что была стандартной первая деталь, т.е. условная вероятность события B, равна (B)=7/11.
Вероятность того, что обе детали окажутся стандартными, находим по теореме умножения вероятностей зависимых событий:
P(AB)=P(A) (B)=(2/3) (7/11)=14/33=0,424

Самостоятельное применение знаний, умений и навыков.
Вариант 1.

  1. Какова вероятность того, что наудачу выбранное целое число от 40 до 70 является кратным 6?
  2. Какова вероятность того, что при пяти бросаниях монеты она три раза упадет гербом к верху?

Вариант 2.

  1. Какова вероятность того, что наудачу выбранное целое число от 1 до 30 (включительно) является делителем числа 30?
  2. В НИИ работает 120 человек, из них 70 знают английский язык, 60 – немецкий, а 50 – знают оба. Какова вероятность того, что выбранный наудачу сотрудник не знает ни одного иностранного языка?

VI . Подведение итогов занятия.

VII . Домашнее задание:
Г.Н. Яковлев, математика, книга 2, § 24.1, 24.2, стр. 365-386. Упражнения 24.11, 24.12, 24.17

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

В случаях, когда интересующее событие является суммой других событий, для нахождения его вероятности используется формула сложения.

Формула сложения имеет две основные разновидности – для совместных и для несовместных событий. Обосновать эти формулы можно, используя диаграммы Венна (рис. 21). Напомним, что на этих диаграммах вероятности событий численно равны площадям соответствующих этим событиям зон.

Для двух несовместных событий :

Р(А+В) = Р(А) + Р(В). (8, а)

Для N несовместных событий , вероятность их суммы равна сумме вероятностей этих событий:

= .(8б)

Из формулы сложения несовместных событий имеются два важных следствия.

Следствие 1. Для событий, образующих полную группу, сумма их вероятностей равна единице:

= 1.

Это объясняется следующим. Для событий, образующих полную группу, в левой части выражения (8б) находится вероятность того, что произойдёт одно из событий А i , но так как полная группа исчерпывает весь перечень возможных событий, то одно из таких событий произойдёт обязательно. Таким образом, в левой части записана вероятность события, которое обязательно произойдёт – достоверного события. Вероятность его равна единице.

Следствие 2. Сумма вероятностей двух противоположных событий равна единице :

Р(А) + Р(Ā) = 1.

Это следствие вытекает из предыдущего, так как противоположные события всегда образуют полную группу.

Пример 15

В ероятность работоспособного состояния технического устройства равна 0,8. Найти вероятность отказа этого устройства за тот же период наблюдений.

Решение.

Важное замечание . В теории надёжности принято вероятность работоспособного состояния обозначать буквой р , а вероятность отказа - буквой q. В дальнейшем будем использовать эти обозначения. Как та, так и другая вероятности являются функциями времени. Так, для больших периодов времени вероятность работоспособного состояния любого объекта приближается к нулю. Вероятность отказа любого объекта близка к нулю для малых периодов времени. В тех случаях, когда период наблюдения в задачах не указан, подразумевается, что он одинаков для всех рассматриваемых объектов.

Нахождение устройства в состояниях работоспособности и отказа – противоположные события. Пользуясь следствием 2, получим вероятность отказа устройства:

q = 1 – р = 1 – 0,8 = 0,2.

Для двух совместных событий формула сложения вероятностей имеет вид:

Р(А+В) = Р(А) + Р(В) – Р(АВ ), (9)

что иллюстрирует диаграмма Венна (рис. 22).

Действительно, чтобы найти всю заштрихованную площадь (она соответствует сумме событий А + В), нужно из суммы площадей фигур А и В вычесть площадь общей зоны (она соответствует произведению событий АВ), так как иначе она будет учтена дважды.


Для трех совместных событий формула сложения вероятностей усложняется:

Р(А+В+С)=Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(АВС). (10)

На диаграмме Венна (рис. 23) искомая вероятность численно равна общей площади зоны, образованной событиями А, В и С (для упрощения рисунка единичный квадрат на нем не показан).

После того, как из суммы площадей зон А, В и С вычтены площади зон АВ, АС и СВ получилось, что площадь зоны АВС была просуммирована трижды и трижды вычтена. Поэтому для учета этой площади она должна быть добавлена в окончательное выражение.

При увеличении числа слагаемых формула сложения становится всё более и более громоздкой, но принцип её построения остаётся прежним: сначала суммируются вероятности событий взятых по одиночке, затем вычитаются вероятности всех по парных комбинаций событий, прибавляются вероятности событий взятых тройками, вычитаются вероятности комбинаций событий взятых четверками и т.д.

В итоге следует подчеркнуть: формула сложения вероятностей совместных событий при количестве слагаемых от трех и более громоздка и неудобна к применению, использование ее при решении задач нецелесообразно .

Пример 16

Для ниже приведенной схемы электроснабжения (рис. 24) определить вероятность отказа системы в целом Q С по вероятностям отказа q i отдельных элементов (генератора, трансформаторов и линии).


Состояния отказа отдельных элементов системы электроснабжения, так же как и состояния работоспособности, всегда являются попарно совместными событиями , так как нет никаких принципиальных препятствий к тому, чтобы одновременно производился ремонт, например, линии и трансформатора. Отказ системы наступает при отказе любого её элемента: или генератора, или 1-го трансформатора, или линии, или 2-го трансформатора, или при отказе любой пары, любой тройки или всех четырёх элементов. Следовательно, искомое событие – отказ системы является суммой отказов отдельных элементов. Для решения задачи может быть использована формула сложения совместных событий:

Q с = q г + q т1 + q л + q т2 – q г q т1 – q г q л – q г q т2 – q т1 q л – q т1 q т2 – q л q т2 + q г q т1 q л + q г q л q т2 + q г q т1 q т2 + q т1 q т2 q л – q г q т1 q л q т2.

Это решение ещё раз убеждает в громоздкости формулы сложения для совместных событий. В дальнейшем будет рассмотрен другой более рациональный способ решения данной задачи.

Полученное выше решение может быть упрощено с учётом того, что вероятности отказов отдельных элементов системы электроснабжения для применяемого обычно в расчётах надежности периода в один год достаточно малы (порядка 10 -2). Поэтому все слагаемые кроме первых четырех можно отбросить, что практически не повлияет на численный результат. Тогда можно записать:

Q с q г + q т1 + q л + q т2 .

Однако к подобным упрощениям надо относится осторожно, внимательно изучая их последствия, так как часто отбрасываемые слагаемые могут оказаться соизмеримыми с первыми.

Пример 17

Определить вероятность работоспособного состояния системы Р С , состоящей из трех резервирующих друг друга элементов.

Решение . Резервирующие друг друга элементы на логической схеме анализа надёжности изображаются соединенными параллельно (рис. 25):

Резервированная система работоспособна, когда работоспособен или 1-й, или 2-й, или 3-й элемент, или работоспособна любая пара, или все три элемента совместно. Следовательно, работоспособное состояние системы есть сумма работоспособных состояний отдельных элементов. По формуле сложения для совместных событий Р с = Р 1 + Р 2 + Р 3 – Р 1 Р 2 – Р 1 Р 3 – Р 2 Р 3 + Р 1 Р 2 Р 3 . , где Р 1 , Р 2 и Р 3 – вероятности работоспособного состояния элементов 1, 2 и 3 соответственно.

В данном случае упрощать решение, отбрасывая по парные произведения нельзя, поскольку такое приближение даст значительную погрешность (эти произведения обычно числено близки к первым трём слагаемым). Как и в примере 16, эта задача имеет другое более компактное решение.

Пример 18

Для двухцепной линии электропередачи (рис. 26) известна вероятность отказа каждой цепи: q 1 = q 2 = 0,001. Определить вероятности того, что линия будет иметь стопроцентную пропускную способность – Р(R 100), пятидесяти процентную пропускную способность - Р(R 50), и вероятность того, что система откажет – Q.

Линия имеет стопроцентную пропускную способность, когда работоспособна и 1-я и 2-я цепь:

Р(100%) = р 1 р 2 = (1 – q 1)(1 – q 2) =

= (1 – 0,001)(1 – 0,001) = 0,998001.

Линия отказывает, когда отказывает и 1-я и 2-я цепь:

Р(0%) = q 1 q 2 =0,001∙0,001 = 10 -6 .

Линия имеет пятидесяти процентную пропускную способность, когда работоспособна 1-я цепь и отказала 2-я, или когда работоспособна 2-я цепь и отказала 1-я:

Р(50%)= р 1 q 2 + р 2 q 1 = 2∙0,999∙10 -3 = 0,001998.

В последнем выражении использована формула сложения для несовместных событий, каковыми они и являются.

События, рассмотренные в этой задаче, составляют полную группу, поэтому сумма их вероятностей составляет единицу.

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации