Формула расчета давления на площадь. Сила давления

Инструкция

Найдите давление идеального газа при наличии значений средней скорости молекул , массы одной молекулы и концентрации вещества по формуле P=⅓nm0v2, где n – концентрация (в граммах или молях на литр), m0 – масса одной молекулы.

Вычислите давление , если вы знаете температуру газа и его концентрацию, используя формулу P=nkT, где k – постоянная Больцмана (k=1,38·10-23 моль·К-1), Т - температура по абсолютной шкале Кельвина.

Найдите давление из двух равноценных вариантов уравнения Менделеева-Клайперона в зависимости от известных значений: P=mRT/MV или P=νRT/V, где R – универсальная газовая постоянная (R=8,31 Дж/моль·К), ν - количество вещества в молях, V – объем газа в м3.

Если в условии задачи указана средняя кинетическая энергия молекул газа и его концентрация, найдите давление с помощью формулы P=⅔nEк, где Eк - кинетическая энергия в Дж.

Найдите давление из газовых законов - изохорного (V=const) и изотермического (T=const), если дано давление в одном из состояний. При изохорном процессе отношение давлений в двух состояниях равно отношению температур : P1/P2=T1/T2. Во втором случае, если температура остается постоянной величиной, произведение давления газа на его объем в первом состоянии равно тому же произведению во втором состоянии: P1·V1=P2·V2. Выразите неизвестную величину.

При расчете парциального давления пара в воздухе , если в условии даны температура и относительная влажность воздуха, выразите давление из формулы φ/100=Р1/Р2, где φ/100 - относительная влажность, Р1 - парциальное давление водяного пара, Р2 - максимальное значение паров воды при данной температуре. В ходе расчета пользуйтесь таблицами зависимости максимальной упругости пара (максимального парциального давления) от температуры в градусах Цельсия.

Даже приложив небольшое усилие, можно создать значительное давление . Все, что для этого необходимо - сконцентрировать это усилие на небольшой площади. И наоборот, если равномерно распределить по большой площади значительное усилие, давление получится сравнительно малым. Чтобы узнать, каким именно, придется провести расчет.

Инструкция

В случае если в задаче приведена не сила, а масса груза, вычислите силу по следующей формуле:F=mg, где F - сила (Н), m - масса (кг), g - ускорение свободного падения, равное 9,80665 м/с².

Если в условиях вместо площади указаны геометрические параметры области, на которую оказывается давление , вначале рассчитайте площадь этой области. Например, для прямоугольника:S=ab, где S - площадь (м²), a - длина (м), b - ширина (м).Для круга:S=πR², где S - площадь (м²), π - число «пи», 3,1415926535 (безразмерная величина), R - радиус (м).

Чтобы узнать давление , поделите усилие на площадь:P=F/S, где P - давление (Па), F - сила (н), S - площадь (м²).

В ходе подготовки сопроводительной документации к товарам, предназначенным для поставки на экспорт, может потребоваться выразить давление в фунтах на квадратный дюйм (PSI - pounds per square inch). В этом случае руководствуйтесь следующим соотношением: 1 PSI=6894,75729 Па.

Видео по теме

Источники:

  • как вычислить атмосферное давление

Выдержит ли ведро, если налить в него воды? А если налить туда более тяжелую жидкость? Для того чтобы ответить на этот вопрос, необходимо рассчитать давление , которое оказывает жидкость на стенки того или иного сосуда. Это очень часто бывает необходимо на производстве – например, при изготовлении цистерн или резервуаров. Особенно важно рассчитать прочность емкостей, если речь идет об опасных жидкостях.

Вам понадобится

  • Сосуд
  • Жидкость с известной плотностью
  • Знание закона Паскаля
  • Ареометр или пикнометр
  • Мерная мензурка
  • Таблица поправок для взвешивания на воздухе
  • Линейка

Инструкция

Определите плотность жидкости . Обычно это делается с помощью пикнометра или ареометра. Ареометр внешне похож на обычный термометр, внизу его расположен резервуар, заполненный дробью или ртутью, в средней части – термометр, а в верхней части – шкала плотностей. Каждое деление соответствует относительной плотности жидкости. Там же указывается температура, при которой нужно измерять плотность. Как правило , измерения проводят при температуре 20оС. Сухой ареометр погружают в сосуд с жидкостью, пока не станет понятно , что он там свободно плавает. Подержите ареометр в жидкости 4 минуты и посмотрите, на уровне какого деления он погружен в воду.

Измерьте высоту уровня жидкости в сосуде любым доступным способом. Это может быть линейка, штанген-циркуль, мерный циркуль и т.д. Нулевая отметка линейки должна находиться на нижнем уровне жидкости, верхняя – на уровне поверхности жидкости.

Вычислите давление на дно сосуда . Согласно закону Паскаля, оно не зависит от формы самого сосуда. Давление определяется только плотностью жидкости и высотой ее уровня, и рассчитывается по формуле P= h*?, где P – давление , h – высота уровня жидкости, ? – плотность жидкости. Приведите единицы измерения в вид, удобный для дальнейшего применения.

Видео по теме

Обратите внимание

Лучше пользоваться набором ареометров, в который входят приборы для измерения плотности жидкостей легче или тяжелее воды. Существуют специальные ареометры для измерения плотности спирта, молока и некоторых других жидкостей.

Чтобы измерить плотность жидкости ареометром, сосуд должен быть не менее 0,5 л.

Если рассматривать жидкость как несжимаемую, то давление на все поверхности сосуда будет равномерным.

Полезный совет

Измерение плотность с помощью пикнометра более точное, хотя и более трудоемкое. Вам понадобятся еще аналитические весы, дистиллированная вода, спирт, эфир и термостат. Такое измерение проводят в основном в специально оснащенных лабораториях. Взвесьте прибор на аналитических весах, которые дают высокую точность (до 0,0002 г). Заполните его дистиллированной водой, чуть выше расположения метки, и закройте пробкой. Поместите пикнометр в термостат и выдержите 20 минут при температуре 20оС. Уменьшите количество воды до метки. Излишки уберите пипеткой и снова закройте пикнометр. Поместите его в термостат на 10 минут, проверьте, совпадает ли уровень жидкости с меткой. Протрите пикнометр снаружи мягкой салфеткой и оставьте на 10 минут за стеклом коробки аналитических весов, после чего снова взвесьте. Узнав таким образом точную массу прибора, вылейте из него воду, сполосните спиртом и эфиром, продуйте. Заполните пикнометр жидкостью, плотность которой нужно узнать, и действуйте точно так же, как и с дистиллированной водой.

Если нет специального прибора, можно измерить плотность с помощью весов и мерной мензурки. Поставьте на весы мензурку и уравновесьте чашечки. Запишите массу. Наполните мензурку исследуемой жидкостью на заданную единицу объема и снова взвесьте. Разница в массах является массой жидкости в заданном объеме. Поделив массу на объем, вы получите плотность.

Вычислить среднюю скорость нетрудно. Для этого необходимо просто разделить длину пройденного пути на время. Однако на практике и при решении задач иногда возникают дополнительные вопросы. Например, что считать пройденным путем? Показания спидометра или реальное смещение объекта? Что считать временем в пути, если объект половину времени никуда не двигался? Без учета всех этих нюансов невозможно правильно вычислить среднюю скорость.

Вам понадобится

  • калькулятор или компьютер, спидометр

Инструкция

Для вычисления средней скорости равномерного движения объекта, просто измерьте его скорость в любой точке пути. Так как скорость движения постоянна, то она и будет средней скоростью.
Еще проще эта зависимость выглядит в виде формулы :Vср=V, где
Vср – средняя скорость, а
V – скорость равномерного движения.

Чтобы вычислить среднюю скорость равноускоренного движения, найдите среднее арифметическое начальной и конечной скорости. Для этого найдите сумму этих скоростей и разделите на два. Полученное число и будет средней скоростью объекта.
Нагляднее это выглядит в виде следующей формулы:Vср = (Vкон + Vнач) / 2, где
Vср – средняя скорость,
Vкон – конечная скорость,
Vнач – начальная скорость.

Если задана величина ускорения и начальная скорость, а конечная скорость неизвестна, то преобразуйте вышеприведенную формулу следующим образом:
Так как при равноускоренном движении Vкон = Vнач + a*t, где а – ускорение объекта, а t – время, то имеем:Vср = (Vкон + Vнач) / 2 = (Vнач + a*t + Vнач) / 2 = Vнач + a*t / 2

Если же, наоборот, известны конечная скорость и ускорение тела, но начальная скорость не задана, то преобразуйте формулу к следующему виду:Vср = (Vкон + Vнач) / 2 = (Vкон + Vкон - a*t) / 2 = Vкон - a*t / 2

Если заданы длина пройденного телом пути, а также время, которое понадобилось на прохождение этого расстояния, то просто разделите этот путь на затраченное время. То есть используйте общую формулу:Vср = S / t, где S – общая длина пройденного пути.Время, затраченное на прохождение пути учитывается независимо от того, двигался объект непрерывно или останавливался.

Если в условиях задачи специально не указано, какую именно среднюю скорость необходимо вычислить, то подразумевается средняя путевая скорость .
Чтобы вычислить среднюю путевую скорость, берется общая длина пройденного пути, т.е. его траектория. Если во время движения объект возвращался в пройденные точки пути, то это расстояние также учитывается. Так, например, для автомобиля длина пути, необходимая для вычисления средней путевой скорости, будет соответствовать показаниям спидометра (разности показаний).

Если необходимо вычислить среднюю скорость перемещения (смещения), то под пройденным путем подразумевается то расстояние, на которое тело действительно переместилось.
Так как перемещение всегда происходит в определенном направлении, то смещение (S) величина векторная, т.е. характеризуется как направлением, так и абсолютной величиной. Следовательно, и значение средней скорости смещения будет величиной векторной. В связи с этим, при решении подобных задач обязательно узнайте: какую именно скорость требуется вычислить. Среднюю путевую скорость, числовое значение средней скорости смещения или вектор средней скорости смещения.
В частности, если тело в процессе движения возвращается в исходную точку, то считается, что его средняя скорость смещения равна нулю.

Это физическая скалярная величина, которая определяется по формуле



Атмосферное давление

Атмосфера - это воздушная оболочка Земли, которая удерживается гравитационными силами . Атмосфера имеет вес и давит на все тела на Земле. Давление атмосферы составляет около 760 мм.рт.ст. или 1 атм., или 101325Па. Миллиметр ртутного столба, атмосфера - это различные внесистемные единицы измерения давления. Атмосферное давление уменьшается на 1 мм.рт.ст. при поднятии над Землей на каждые 11м.

Что такое давление в 1 атм? Рукопожатие крепкого мужчины составляет 0,1 атм, удар боксера составляет несколько атмосферных единиц. Давление каблука-шпильки составляет 100 атмосфер. Если на ладонь положить гирю в 100 кг, то получим неравномерное давление в одну атмосферу, при погружении на 10 м под воду получим равномерное давление в 1 атмосферу. Равномерное давление легко переносится человеческим организмом. Нормальное атмосферное давление, которое действует на каждого человека, компенсируется внутренним давлением, поэтому его мы совершенно не замечаем, несмотря на то, что оно является достаточно существенным.

Закон Паскаля

Давление на жидкость или газ передается во всех направлениях одинаково.



Давление внутри жидкости (газа) на одной и той же глубине одинаково во всех направлениях (влево вправо, вниз и вверх!)

Гидростатическое давление

Это давления столбика жидкости на дно сосуда. Какая сила создает давление? Жидкость обладает весом, который давит на дно.


Давление жидкости на дно



Давление на дно сосуда не зависит от формы сосуда, но зависит от площади его дна. При этом сила давления на дно может быть и больше и меньше силы тяжести жидкости в сосуде. В этом заключается "гидростатический парадокс".

На стенку сосуда гидростатическое давление распределено неравномерно: у поверхности жидкости оно равно нулю (без учета атмосферного давления), внутри жидкости изменяется прямо пропорционально глубине и на уровне дна достигает значения . Это переменное давление можно заменить средним давлением

Сообщающиеся сосуды

Это сосуды, которые имеют общий канал внизу.

Однородная жидкость устанавливается в сообщающихся сосудах на одном уровне независимо от формы сосудов, как видно на фотографии.

Разнородные жидкости устанавливаются в сообщающихся сосудах согласно формуле

Гидравлический пресс

Гидравлический пресс состоит из двух сообщающихся сосудов цилиндрической формы. В сосудах двигаются поршни с площадями S 1 и S 2 . Цилиндры заполнены техническим маслом.

Объем жидкости, вытесненный малым поршнем поступает в большой цилиндр.

Гидравлический пресс дает выигрыш в силе во столько раз, во сколько площадь большего поршня больше площади меньшего. Выигрыша в работе гидравлический пресс не дает.

На практике вследствие наличия трения:

Если сила направлена под углом к нормали (перпендикуляру), то давление определяется по формуле

Газы и жидкости, находящиеся под давлением, нашли широкое применение в промышленной технике. Например, пневматический отбойный молоток. При помощи сжатого воздуха работают также двери в автобусах и метро, тормоза поездов и грузовых автомобилей.

Встречаются также механизмы, работающие при помощи сжатой жидкости. Они называются гидравлическими. Например, устройство гидравлического пресса.

Численное значение атмосферного давления было определено опытным путем в 1643 году итальянским ученым Э.Торричелли.

Стеклянную трубку длиной около метра, запаянную с одного конца, наполняют доверху ртутью. Затем, плотно закрыв отверстие пальцем, трубку переворачивают и опускают в чашу со ртутью, после чего палец убирают. Ртуть из трубки начинает выливаться, но не вся: остаётся «столб» » 76 см высотой, считая от уровня в чаше. Примечательно, что эта высота не зависит ни от длины трубки, ни от глубины её погружения.



Атмосферное давление уравновешивает гидростатическое давление столбика ртути. Согласно закону Паскаля давление атмосферы давит вверх на столбик ртути. А столбик ртути давит вниз своим весом. Ртуть перестает опускаться, когда эти давления одинаковые. Вычислив гидростатическое давление ртути известной высоты, определили давление атмосферы.



Трубка Торричелли с линейкой является простейшим барометром – прибором для измерения атмосферного давления

Для измерения атмосферного давления используют также барометр-анероид .

Поскольку атмосферное давление уменьшается по мере удаления от поверхности Земли, то шкалу анероида можно проградуировать в метрах. В этом случае он называется альтиметром .

Пусть прямоугольный металлический брусок площадью основания S и высотой h лежит на дне сосуда, в который налита вода до высоты H, H>h. Как определить силу давления бруска на дно сосуда?

Возможны два случая! Пусть брусок неплотно прилегает ко дну сосуда , тогда снизу на брусок действует сила давления жидкости. Эта сила больше силы давления жидкости сверху, поэтому возникает сила Архимеда . Сила Архимеда - результат разницы силы гидростатического давления на нижнюю грань бруска и верхнюю грань, зависит от высоты бруска и площади основания.

Используем 2 закон Ньютона:

Рассмотрим второй возможный случай. Пусть брусок прилегает ко дну так плотно, что жидкость под него не подтекает. Снизу отсутствует давление жидкости, следовательно сила Архимеда равна нулю. Сверху же на брусок действует сила давления жидкости и атмосферы.

Используем 2 закон Ньютона для этого случая:


p 0 - атмосферное давление,
p - гидростатическое давление столба жидкости высотой H-h.

Когда одно тело давит на поверхность другого, то оно оказывает на него силу, т. е. силу давления . В свою очередь, тело, на которое давит другое тело, испытывает действие этой силы, т. е. давление .

Когда человек стоит на той или иной поверхности, то поверхность испытывает давление от веса человека (как известно, вес - это сила). Когда человек вбивает гвоздь в деревянную дверь, то дверь через гвоздь испытывает давление от силы ударов человека.

Из данных примеров можно сделать вывод, что сила давления направлена перпендикулярно поверхности, к которой прикладывается . У силы есть направление.

Давление характеризуется только числовым значением. У него нет направления, т. е. давление - это скалярная величина . Давление относится к поверхности, на которую действует сила (сила давления).

Понятно, что чем больше сила давления, тем больше будет и давление . Однако давление зависит не только от силы, оно также зависит от площади поверхности, к которой прикладывается эта сила. Чем площадь больше, тем давление при той же силе меньше . Можно представить, что одна и та же сила как бы «размазывается» на большее количество точек поверхности, и, следовательно, каждой точке достается меньше силы, поэтому давление в каждой точке меньше.

Таким образом, давление зависит от силы давления прямопропорционально, а от площади воздействия обратнопропорционально. Если обозначить давление буквой p , силу - как F , а площадь - буквой S , то данные отношения можно выразить формулой:

Давление - это физическая величина, равная отношению силы давления, действующей на определенную площадь, к этой площади.

Если мы хотим увеличить давление, то надо увеличивать силу давления и(или) уменьшать площадь действия силы. Если же требуется уменьшить давление, то надо уменьшать силу и(или) увеличивать площадь, на которую производится давление.

На практике чаще меняют площадь, так как это проще. Например, чтобы вездеход мог пройти по снегу или болоту и не провалиться в них, его колеса делают достаточно широкими. В таком случае вес вездехода перераспределяется на большую площадь и на каждую единицу поверхности сила давления становится меньше. Или, например, чтобы нож лучше резал, его затачивают, стараются сделать более тонким. В таком случае сила перераспределятся на меньшую площадь поверхности и оказывает большее давление на разрезаемый предмет.

Так как в системе СИ единицей измерения силы является ньютон (Н), а площади - квадратный метр (м 2), то давление измеряется в ньютонах на квадратный метр (Н/м 2). Однако вместо Н/м 2 используют единицу измерения Па (паскаль). То есть 1 Н/м 2 = 1 Па.

Давление в 1 Па - это очень маленькое давление. Примерно такое давление оказывает лист бумаги площадью в 1 м2 на поверхность. Поэтому часто давление измеряют в кПа (1 кПа = 1000 Па) или гПа (1 гПа = 100 Па).

В прошлом году мы выполнили проектную работу на тему «Давление и его значение в практической деятельности». Нас заинтересовало значение давления в окружающем нас мире. Было интересно найти применение наших знаний в практических целях.

Нам очень нравится ходить на прогулки в зимний лес. Стало интересно: почему можно проваливаться в сугроб, стоя без лыж, а на лыжах можно скользить по любым снежным горкам. Дома, садясь на жёсткий табурет, не возможно просидеть очень долго, а на мягком кресле можно сидеть часами. Почему?

Разглядывая различные машины, мы обращаем внимание на различные размеры колёс. Почему у большегрузных машин и вездеходов шины очень широкие?

Понятие давления.

Давление и сила давления

Нам неоднократно приходилось наблюдать, как действие одной и той же силы приводит к разным результатам. Например, как бы сильно мы не давили на доску, нам вряд ли удастся проткнуть её пальцем. Но действуя с той же силой на шляпку канцелярской кнопки, мы легко загоняем острый конец в ту же самую доску. Чтобы не проваливаться в глубокий снег, человек надевает лыжи. И хотя вес человека при этом не меняется, на лыжах он не продавливает поверхность снега.

Эти и множество других примеров показывают, что результат действия силы зависит не только от её численного значения, но и площади поверхности, одна и та же сила оказывает разное давление.

Давлением называют отношение силы, действующей на поверхность тела перпендикулярно этой поверхности, к площади этой поверхности:

ДАВЛЕНИЕ = СИЛА_

Давление принято обозначать буквой р. Поэтому можно записать формулу, используя буквенные обозначения (вспомним, что сила обозначается буквой F, а площадь – S): р = _F_

Давление показывает, какая сила действует на единицу площади поверхности тела. Единица давления – паскаль (Па). Давление в один Паскаль оказывает сила в один ньютон на площадь в один квадратный метр: 1 Па = 1 Н/1м².

Силу, которая создаёт давление на какую-либо поверхность, называют силой давления.

Если умножить давление на величину площади поверхности, то можно вычислить силу давления: сила давления = давление площадь, или то же самое в буквенных обозначениях:

Чтобы уменьшить давление, достаточно увеличить площадь, на которую действует сила. Например, увеличивая площадь нижней части фундамента, тем самым уменьшают давление дома на грунт. У тракторов и танков большая опорная площадь гусениц, поэтому, несмотря на значительный вес, их давление на грунт не так велико: эти машины могут проходить даже по топким болотистым почвам.

В случаях, когда необходимо увеличить давление, уменьшают площадь поверхности (при этом сила давления остаётся той же). Так, для увеличения давления затачивают колющие и режущие инструменты – ножницы, ножи, иглы, кусачки.

2. Давление на глубине

Водолаз в лёгком снаряжении может погрузиться в воду на глубину примерно до 80 метров. При необходимости более глубокого погружения применяют специальные скафандры, а также используют специальные глубоководные аппараты–подводные лодки, батискафы. Они защищают человека от громадного давления, действующего на тело, погруженного на глубину. Как возникает это давление?

Мысленно разобьём жидкость на горизонтальные слои. На верхний слой жидкостей действует сила тяжести, поэтому вес верхнего слоя жидкости создаёт давление на второй слой. На второй слой также действует сила тяжести, и вес второго слоя создаёт давление на третий слой. Однако, по закону Паскаля, второй слой без изменения передаёт третьему слою ещё и давление верхнего слоя. Значит, третий слой находится под большим давлением, чем второй. Аналогичная картина наблюдается с последующими слоями: чем глубже, тем давление больше. В сжатой этим давлением жидкости возникает сила упругости, которая оказывает давление на стенки и дно сосуда и на дно поверхности погруженных в жидкость тел.

Рассчитаем, какое давление оказывает столб жидкости высотой h на дно сосуда, площадь которого S. На дно сосуда оказывает давление вес равный силе тяжести. Силу тяжести подсчитываем по известной нам формуле: Fтяж = m g, где m- это масса жидкости. Хотя масса нам неизвестна, мы можем её рассчитать по объёму и плотности: m = p V

Плотность возьмём из таблицы, а объем V вычислим. Объём, как известно, равен произведению площади основания S на высоту h; V=s h. Масса жидкости получится равной: m = p V= p S h

Подставим массу в формулу для расчёта силы тяжести:

Fтяж= m g = p S h g

Определим давление жидкости на дно сосуда:

Как видно из формулы, давление жидкости на дно сосуда прямо пропорционально высоте столба жидкости.

По этой же формуле можно вычислить давление столба жидкости: тогда в качестве h мы должны подставить глубину, на которой хотим определить давление.

Поскольку закон Паскаля справедлив не только для жидкостей, но и для газов, то все приведённые выше рассуждения и выводы относятся не только к жидкостям, но и к газам.

Часто говорят, что мы живём на дне воздушного слоя воздуха, окружающего Землю. Это – атмосферное давление. Известно, что с увеличением высоты над уровнем моря, атмосферное давление убывает. Это легко объяснить: чем выше мы поднимаемся, тем меньше высота столба воздуха h, а значит, меньше и создаваемое им давление.

3. Передача давления жидкостями и газами

Твёрдые тела передают оказываемое на них давление в направлении действия силы. Например, кнопка продавливает доску в том же направлении, в котором на неё давит палец.

Совсем иначе обстоит дело с жидкостями и газами. Если мы надуваем воздушный шарик, то своим дыханием оказываем давление во вполне определённом направлении. Однако при этом шарик раздувается во все стороны.

Играя с самодельными брызгалками, мальчишки сдавливают с боков пластмассовые баночки, заполненные водой. При этом вода бьет из отверстия в пробке – направление давления изменяется. Эти и подобные опыты подтверждают закон Паскаля, который гласит: жидкости и газы передают оказываемое на них давление без изменения в каждую точку жидкости или газа.

Такое свойство жидкостей и газов объясняется их строением. В том месте жидкости или газа, на котором оказывается давление, частицы вещества расположатся более плотно, чем раньше. Но частицы вещества в жидкости и газе подвижны, и по этой причине не могут располагаться в одном месте более плотно, чем в другом. Поэтому частицы снова распределяются равномерно, но на более близком расстоянии друг от друга. Давление, оказанное на часть частиц вещества, предаётся всем остальным частицам.

Закон Паскаля лежит в основе конструкции гидравлических и пневматических машин и устройств.

Основу гидравлических машины составляют два цилиндрических сосуда разного диаметра, заполненные жидкостью, как правило маслом. Сосуды соединены между собой трубкой. В каждом из сосудов есть поршень, который плотно прилегает к стенкам сосуда, но в то же время может свободно перемещаться вверх и вниз.

Если на поршень малого цилиндра подействовать силой F1, то, зная его площадь (обозначим её S1), легко вычислить оказываемое на него давление:

По закону Паскаля, жидкость передаст это давление большому поршню без изменения: снизу на большой поршень жидкость оказывает давление р. Учитывая, что площадь большого поршня S2, вычислим силу давления F2:

Выразим из формулы (2) давление и получим:

Обратим внимание, что левые части равенства (1) и (3) равны друг другу. Значит, равны и правые части этих равенств, то есть:

Откуда следует, что

Таким образом, мы получили следующий результат: во сколько раз площадь второго поршня больше площади первого, во столько же раз гидравлическая машина даёт выигрыш в силе.

Конструкции, созданные на основе принципа гидравлической машины, находят широкое применение в технике.

Глава 2. Практическое применение

1. Расчёт давления человека на лыжах и без них.

Моя масса равна 46 килограммов. Зная, что сила тяжести рассчитывается по формуле

Fт = mg ; основная формула примет следующий вид: p = ; где S – площадь обеих лыж, зная размеры лыж, вычислим её.

Размеры лыжи 1,6м 0,04 м; то S1 = 1,6 0,04 = 0,064 (м ²) (Это площадь одной лыжи, а у нас их две). В результате конечная расчетная формула будет иметь следующий вид: p = = = 3593 = 3593Па

Теперь рассчитаем давление, которое я оказываю, стоя на полу. Вычислим размеры подошвы обуви 26см * 10,5 см, то

S2 = 0,26м * 0,105м = 0,027м² (это площадь одной подошвы, у нас их две). В результате конечная расчетная формула будет иметь следующий вид:

Р2 = = 8518 Па

В результате полученных вычислений выяснили – давление на лыжах равно 3595 Па, а давление без лыж на опору 8518 Па.

В результате полученных вычислений площадь лыж равна 0,128м², а площадь подошвы равна 0,054 м².

0,128м² > 0,054м² в 2,3 раза.

Отсюда можно сделать следующий вывод: во сколько раз увеличиваем площадь опоры, во столько же раз уменьшается давление, которое мы создаем на опору.

2. Расчёт давления на опору в разных положениях бруска.

Нам необходимо это сделать для того, чтобы выяснить, как делать кладку из кирпичей на даче? В каком из случаев будет оказываться меньшее давление?

Измерим экспериментальны брусок. Размеры бруска 10см * 6см * 4 см. Для расчетов воспользуемся следующими формулами: p = Fт = mg p =

Найдём площади граней:

S1 = 0,1м * 0,06м = 0,006 м²

S2 = 0,1м * 0,04м = 0,004 м²

S3 = 0,06 * 0,04м = 0,0024м²

Взвесим брусок. m = 100г = 0,1 кг

Выполним необходимые расчёты.

р1 = = Па = 167 Па р2 = = Па = 250 Па р3 = Па = 417 Па

Рассмотрев зависимость давления от площади опоры, приходим к выводу: во сколько раз увеличиваем площадь опоры, во столько же раз уменьшается давление, которое мы создаем на опору.

S1 (0,006м²) > S2 (0,004м²) > S3 (0,0024м²)

3. Расчёт давления жидкости на дно сосудов.

В практической жизни мы встречаемся с сосудами различной формы: банки разных размеров, бутылки, кастрюли, кружки. Рассчитаем, какое давление на дно сосудов разной формы оказывает столб воды.

Нальём воду в 3-х литровую и литровую банку 1 литр воды и рассчитаем давление жидкости на дно сосудов. Высота столба жидкости в банках различная. В 3-х литровой банке равна 5 см, а литровой 14 см.

Расчетная формула для нахождения давления в жидкости:

Р = ρ g h ρ = 1000 кг/м² (плотность воды) h1= 14 см = 0,14 м h2 = 5 см =0,05 м

Давление на дно литровой банки: Р1 = 1000кг/м * 10Н/кг * 0,14м = 1400Н/м = 1400Па

Давление на дно 3-х литровой банки: Р2 = 1000кг/м * 10Н/кг * 0,05м = 500Н/кг = 500Па h1 (0,14 м) > h2 (0,05м) р1 (1400 Па) > р2 (500 Па)

В результате эксперимента мы выяснили, что одинаковое количество воды оказывает различное давление на дно сосудов и напрямую зависит только от высоты столба жидкости.

Глава 3. Давление в природе и технике.

Когда мы знакомились с литературой по теме Давление», то узнали очень много интересного и поучительно.

1. Атмосферное давление в живой природе

Мухи и древесные лягушки могут держаться на оконном стекле благодаря крошечным присоскам, в которых создаётся разряжение, и атмосферное давление удерживает присоску на стекле.

Рыбы-прилипалы имеют присасывающую поверхность, состоящую из ряда складок, образующих глубокие «карманы». При попытке оторвать присоску от поверхности, к которой она прилипла, глубина карманов увеличивается, давление в них уменьшается и тогда внешнее давление ещё сильнее прижимает присоску.

Слон использует атмосферное давление всякий раз, когда хочет пить. Шея у него короткая, и он не может нагнуть голову в воду, а опускает только хобот и втягивает воздух. Под действием атмосферного давления хобот наполняется водой, тогда слон изгибает его и выливает воду в рот.

Засасывающее действие болота объясняется тем, что при поднятии ноги под ней образуется разряжённое пространство. Перевес атмосферного давления в этом случае может достигать 1000Н на площадь ноги взрослого человека. Однако копыта парнокопытных животных при вытаскивании из трясины пропускают воздух через свой разрез в образовавшееся разряжённое пространство. Давление сверху и снизу копыта выравнивается, и нога вынимается без особого труда.

2. Использование давления в технике.

давление на морских глубинах очень велико, поэтому человек не может находиться на глубине без специальных аппаратов. С аквалангом человек может опуститься на глубину около 100 метров. Защитив себя корпусом подводной лодки, человек может опуститься уже до километра в глубь моря. И лишь специальные аппараты – батискафы и батисферы – позволяют опускаться до глубин нескольких километров.

В прошлом году прошли глубоководные исследования нашего озера Байкал. Аппарат, который опускался на дно священного озера, называется «Мир». Были сделаны уникальные фотографии ландшафта, флоры и фауны Байкала. Взяты пробы грунта дна озера. Планируется дальнейшее продолжение начатой работы по изучению самого глубокого озера мира.

при глубоком погружении с аквалангом человек должен предохранить себя от кессонной болезни. Она возникает, если аквалангист быстро поднимается с глубины на поверхность. Давление воды резко уменьшается и растворённый в крови воздух расширяется. Образующиеся пузырьки закупоривают кровеносные сосуды, мешая движению крови, и человек может погибнуть. Поэтому аквалангисты всплывают медленно, чтобы кровь успевала уносить образующиеся пузырьки воздуха в легкие.

Атмосфера вращается вокруг земной оси вместе с Землей. Если бы атмосфера была неподвижна, то на Земле постоянно бы царил ураган со скоростью ветра свыше 1500км/ч.

из-за давления атмосферы на каждый квадратный сантиметр нашего тела действует сила 10Н.

некоторые планеты солнечной системы тоже имеют атмосферы, однако их давление не позволяет человеку находиться там без скафандра. На Венере, например, атмосферное давление около 100 атм, на Марсе – около 0,006 атм.

барометры Торричелли являются самыми точными барометров. Ими оборудованы метеорологические станции и по их показаниям проверяется работа Барометров-анероидов.

барометр-анероид – очень чувствительный прибор. Например, поднимаясь на последний этаж 9-ти этажного дома, из-за различия атмосферного давления на различной высоте мы обнаружим уменьшение атмосферного давления на 2-3 мм рт. ст.

искусственное понижение или повышение атмосферного давления в специальных помещениях – барокамерах – используют в лечебных целях. Одним из методов баротерапии (греч. «терапия» - лечение) является постановка стеклянных медицинских банок в домашних условиях.

втыкая иглу или булавку в ткань, мы создаём давление около 100МПа.

3. Интересные факты

*Почему на простом табурете сидеть жестко, в то время как на стуле, тоже деревянном, нисколько не жестко? Почему мягко лежать в верёвочном гамаке, который сплетён низ довольно твёрдых шнурков?*

Нетрудно догадаться. Сиденье простого табурета плоско; наше тело соприкасается с ним лишь по небольшой поверхности, на которой и сосредоточивается вся тяжесть туловища. У стула же сиденье вогнутое; оно соприкасается с телом по большой поверхности; по этой поверхности и распределяется вес туловища: на единицу поверхности приходится меньший груз, меньшее давление.

Для большегрузных автомобилей изготавливают очень широкие шины. Это позволяет снизить давление на дорогу. Давление следует уменьшать при движении по заболоченной поверхности. Для этого настилают деревянные чаги, по которым могут ехать даже танки.

Иглы, лезвия, режущие предметы остро оттачиваются, чтобы при малых силах на острие создавалось большое давление. Такими инструментами намного проще работать.

В животном мире это тоже можно наблюдать. Это – клыки у зверей, когти, клювы и т. д.

Как мы пьём?

Неужели и над этим можно задуматься? Конечно. Мы приставляем стакан или ложку с жидкостью ко рту и «втягиваем» в себя их содержимое. Вот это-то простое «втягивание» жидкости, к которому мы так привыкли, и надо объяснить. Почему, в самом деле, жидкость устремляется к нам в рот? Что её увлекает? Причина такова: при питье мы расширяем грудную клетку и тем разрежаем воздух во рту; под давлением наружного воздуха жидкость устремляется в то пространство, где давление меньше, и таким образом проникает в наш рот.

Наоборот, захватив губами горлышко бутылки, вы никакими усилиями не «втяните» из неё воду в рот, так как давление воздуха во рту и над водой одинаково.

Итак, строго говоря, мы пьём не только ртом, но и лёгкими; ведь расширение лёгких – причина того, что жидкость устремляется в наш рот.

В ходе выполненной работы мы глубоко узнали понятие «Давления» с физической точки зрения. Рассмотрели его применение в различных жизненных ситуациях, в природе и технике. Узнали значимость этого понятия для животного мира, рассмотрели случаи практического применения давления в жизни человека и живой природы. Рассчитали, применяя математические навыки и изучили закономерности проявления давления в следующих ситуациях:

Давление человека в различных ситуациях;

Давление жидкости на дно сосудов;

Давление твёрдого тела на опору;

Давление собственного тела в экстремальной ситуации.

В результате исследований были получены следующие выводы:

1. В твёрдых телах давление можно уменьшить, увеличив площадь опоры.

2. В жидкостях и газах давление напрямую зависит от высоты столба жидкости или газа

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации