Источники бесперебойного питания гарантированное электропитание. Системы гарантированного электроснабжения

Энергетика принадлежит к числу базовых инфраструктур. И перебои в подаче электроэнергии, или же некачественное электроснабжение способны парализовать работу практически любой организации, вне зависимости от ее масштаба. В то же время в силу некоторых специфических черт российской энергетики (таких, к примеру, как использование воздушных линий электропередач или общей изношенности инфраструктуры) от проблем, связанных с некачественным электропитанием не застрахован никто. И чем чаще в новостях звучат сообщения о блэкаутах, вызванных веерными отключениями электроэнергии или повреждениями линий электропередач в результате ураганов или ледяных дождей, тем более актуальным становится вопрос: как обеспечить качественное электропитание на объекте в условиях общей нестабильности энергетики?

Все проблемы с электропитанием в общем виде можно свести к двум разновидностям:

  • Некачественное электроснабжение (скачки или колебания напряжения; импульсные скачки при перепадах энергопотребления; отклонения частоты и т.д.).
  • Отключения электричества.

Соответственно, задачи сводится к тому, чтобы

  • обеспечить качество электрической энергии, стабилизировав параметры электропитания;
  • при отключении электричества иметь возможность корректно завершить работу информационных систем;
  • обеспечить оборудованию, которое должно работать непрерывно, возможность продолжать работу до восстановления электропитания (иными словами, бесконечно долго).

Специалистами компании «Рубатех» эти задачи решаются следующим образом:

При некачественном электроснабжении на входе в собственную электросеть устанавливаются фильтры высокочастотных помех и ограничители перенапряжений, что позволяет защитить оборудование от внешних помех. При скачках напряжения устанавливаются стабилизаторы питания различных типов (в зависимости от характера помех). Это не позволяет ликвидировать все виды помех (например, плавающую частоту невозможно перегенерировать заново), но тем не менее значительно повышает качество электропитания и помогает обеспечить нормальную работу оборудования.

Корректно завершить работу информационного оборудования помогают источники бесперебойного питания (ИБП). Как правило, мощности компьютерной техники не особенно высоки, и легко поддаются подсчету, так что установка ИБП в большинстве случаев не вызывает сложности у потребителей. Основная проблема, связанная с использованием ИБП – то, что его аккумуляторы не рассчитаны на длительное время работы. В большинстве случаев ИБП обеспечивает «резерв» в 6-7 минут, позволяющий выключить оборудование, но не дающий возможности продолжить работу. Это ограничение можно «обойти», подключив к ИБП дополнительные аккумуляторы. Но такое решение как правило, оказывается финансово неоправданным, поскольку стоимость аккумулятора, позволяющего компьютеру работать в течение часа после отключения электричества, вероятнее всего, превысит стоимость ИБП.

Для сохранения в работоспособном состоянии инженерных и охранных систем (таких, как системы пожаротушения или охранно-пожарной сигнализации) могут использоваться специальные резервированные источники питания. Благодаря тому, что в охранных системах используется низковольтное оборудование, резервированные источники питания позволяют оборудованию работать от аккумулятора на протяжении нескольких часов.

Если необходимо обеспечить бесперебойную работу оборудования при длительном отсутствии электропитания (особенно это актуально для предприятий с непрерывным циклом производства), используется двухступенчатая схема. Оборудование подключается к ИБП, время работы которого позволяет запустить (автоматически или вручную) резервный генератор, который позволит оборудованию продолжить работу как минимум на протяжении нескольких часов. Параллельно происходит зарядка ИБП от генератора, что позволяет при разрядке генератора произвести переподключение оборудования к новому автономному источнику питания. Отметим, что такие двухступенчатые схемы являются самыми сложными и требуют особого профессионализма при расчете нагрузок, временных интервалов и простраивании связей ИБП с генератором.

Также при решении любой задачи, связанной с обеспечением качественного электропитания, необходимо просчитывать экономическую эффективность принимаемых мер : достаточно часто решение, которое «напрашивается», оказывается на деле не решением проблемы, а источником новых проблем. Например, оператор, предоставлявший в обслуживание складской комплекс, не подключенный к системе электроснабжения, попытался решить проблему путем установки нескольких мощных генераторов. В результате себестоимость электричества оказалась непомерно высока, и вместо прибыли сдача склада принесла серьезные убытки.

Для достижения высочайшей надежности систем резервного электроснабжения объектов повышенной ответственности, а именно для резервирования электрических потребителей особой группы первой категории, проектируются комплексные системы бесперебойного и гарантированного электроснабжения (СБГЭ). Под комплексными системами будем понимать совокупную работу дизельгенератора и . Именно в сочетании функционала этих устройств и образуется комплекс по энергетической защите критически важного оборудования.

При проектировании и реализации подобных существует группа факторов, влияющих на выбор резервного оборудования и его корректную работу. Их необходимо знать и учитывать. Приведем лишь некоторые из них, максимально влияющих на совокупную работу ДЭС и ИБП. Любой источник бесперебойного питания, осуществляя питание нагрузки, потребляет электрический ток, причем форма потребления тока несовершенна и отличается от синусоидальной. Это происходит вследствие возникновения гармонических искажений потребления входного тока. Этим свойством обладает любой электрический источник питания, черпающий электрическую энергию из внешней электросети. Каждый ИБП имеет свой характер потребления входного тока и связанно это с индивидуальным входным коэффициентом гармонических искажений (THDi, Total Harmonic Distortion). Источники различного производства имеют широкий разброс значений коэффициента THDi от 3 до 30%, так и характер потребления входного тока варьируется от почти синусоидального до почти импульсного. Задача разработчика и производителя максимально снизить этот коэффициент, сведя токопотребление к синусоидальному виду. Это достигается разными путями - от установки на ИБП дорогостоящих активных LC–фильтров (THD-фильтры) до применения IGBT технологии при производстве выпрямительной части источника. IGBT технология подразумевает использование при конструировании выпрямителя биполярных транзисторов с изолирующим затвором (Isolated Gate Bipolar Transistor), обеспечивающих высокочастотную (до 20 кГц) работу выпрямителя. На сегодняшний день данная технология является наиболее распространенной и пока максимально надежной в области изготовления источников бесперебойного питания.

Так при совместной работе ИБП мощностью 100 кВт (с коэффициентом THD (КНИ) ~30%) и дизельгенератора мощность последнего должна превышать мощность источника в 2 раза, что составит 200 кВт. Коэффициент превышения мощности дизельной электростанции над мощностью ИБП напрямую зависит от коэффициента гармонических искажений и КПД источника. Зависимость наглядно видна из приведенной ниже таблицы.

30 2
20 1,8
10 1,6
5 1,3
3 1,15

Даже при минимальных искажениях входного тока необходимо оставлять запас мощности дизельгенератора. Этот запас необходим ИБП на собственные нужды, а именно на тепловые потери, которые косвенно выражаются коэффициентом полезного действия, и на заряд присоединенных аккумуляторных батарей (АКБ). Поэтому не стоит верить умельцам, утверждающим, что мощность дизельной электростанции не должна превышать мощность подключенного к ней ИБП.

Таким образом, выбрав ИБП с низкими входными искажениями, появляется возможность купить дизельгенератор не такой большой мощности, при этом сэкономив средства предусмотренные бюджетом. Зачастую, недобросовестные поставщики энергетического оборудования, в силу своего незнания теоретических основ или с целью снизить общий бюджет системы, предлагают в совокупности с ИБП, у которого высокий коэффициент THDi использовать дизельгенераторную установку с меньшим коэффициентом запаса. Такая система работать будет ровно до тех пор, пока нагрузка на ИБП не достигнет номинального (рабочего) уровня, после этого дизельгенератор может остановиться по перегрузке или выйти из строя.

Единовременный наброс нагрузки на дизельгенератор – еще один параметр, который важен при построении СБГЭ. Как известно его уровень не должен превышать 60-70% от номинальной мощности, так как дизельный двигатель может заглохнуть при большем набросе мощностей. Производители ИБП предусмотрели в выпрямительной части функцию «Мягкого старта» («плавный» старт, «soft start»). Это означает, что во время аварийной ситуации при переходе на работу от дизельгенератора, современные ИБП большой мощности (от 10 кВА) начинают плавно увеличивать потребляемый ток, тем самым не позволяя допустить перегрузку на генератор. Время выхода ИБП на номинальный уровень потребления энергии можно программировать в пределах от 10 секунд до 5 минут.

Следующим фактором, влияющим на корректную работу СБГЭ, является коэффициент мощности нагрузки, а именно отношение потребляемой активной мощности к реактивной. Стоит помнить о том, что при снижении уровня нагрузки на ИБП меняется и его входной коэффициент мощности и КПД. Например, при 100% нагрузке входной коэффициент мощности составляет 0.99, т.е. ИБП является практически активной нагрузкой, то при 50% нагрузке коэффициент мощности может снижаться до уровня 0.7-0.5, при этом увеличивается уровень реактивной мощности. Это необходимо помнить при выборе мощности ДЭС.

При работе дизельной электростанции в совокупности с параллельной системой ИБП, производители источников бесперебойного питания предусмотрели программируемую возможность поочередного включения выпрямителей каждого источника, т.е. если в системе параллельно включены 3 ИБП, то их выпрямители, обладающие функцией «мягкого» старта, начнут потреблять электроэнергию поочередно с задержкой, например, в 30 секунд. Это необходимо при построении систем бесперебойного гарантированного электропитания большой мощности.

Следует помнить, что ИБП и дизельгенераторы, работая в совокупности соединены между собой только лишь силовыми кабелями, но при этом существует опция для источников, которая позволяет информационно связывать ИБП и дизельную электростанцию для наиболее мягкой корректной работы, продлевающий общий срок службы и наработку на отказ всей системы бесперебойного гарантированного электропитания (СБГЭ) в целом. Для просчета СБГЭ и подбора оборудования обращайтесь в надежные компании, которые умеют владеть не только коммерческими навыками, но и в состоянии квалифицированно обеспечить техническую поддержку Вашей сделки.

Бесперебойность электроснабжения не является величиной абсолютной с точки зрения самого качества электропитания. При проектировании СБГЭ (системы бесперебойного и гарантированного электропитания) всегда отталкиваются от двух моментов:

– потребители электроэнергии подразделяются на группы по ответственности, т.е. назначается приоритет в электропитании для нагрузок;

– и в каждой группе выделяется самый требовательный к качеству электропитания потребитель.

В этой логике определяются требования к допустимому отклонению параметров сети питания, при которых нагрузка работает не отключаясь. По итогу, "система бесперебойного электропитания " создаёт такую сеть нагрузке, в которой отсутствует даже кратковременное отклонение параметров электропитания за допустимые нагрузкой границы.

Гарантированность электроснабжения подразумевает возможность длительного исчезновения электропитания технологического объекта только так, что это не приводит к аварийному состоянию оборудования и не создаёт опасности для людей и окружающей среды (). В "системе гарантированного электропитания " допускается кратковременное исчезновение электропитания, которое может быть связано с переключением между источниками электроснабжения.

Простыми словами, тут важно понять следующее, что если есть такая нагрузка, кратковременный сбой в питании которой приводит к тому, что алгоритм работы потребителя сбрасывается и требуется начинать незаконченное дело с нуля, или сбой электроснабжения может привести к фатальным последствиям, то такой потребитель однозначно требует бесперебойного питания. Длительность же автономного питания должна позволить закончить некий производственный цикл до его окончания. Примером такой нагрузки может являться оборудование в операционных клиник, или же оборудование хранения данных.

Если же кратковременный сбой в питании нагрузки не приводит к потере незаконченного производственного цикла, не создаёт условий катастрофических последствий, и работа может быть продолжена с любой точки останова, то такой потребитель потребует только гарантированного питания. Примером такой нагрузки может служить освещение помещений, или же эл . двигатель механической мельницы.

Для общего понимания места систем бесперебойного и гарантированного электропитания в электроснабжении объектов, следует обратиться к требованиям нормативных документов, и создать свою систему электропитания не хуже общих требований.

ПУЭ 7-е издание

и обеспечение надежности электроснабжения

1.2.17. Категории электроприёмников по надежности электроснабжения определяются в процессе проектирования системы электроснабжения на основании нормативной документации, а также технологической части проекта.

1.2.18. В отношении обеспечения надежности электроснабжения электроприёмники разделяются на следующие три категории.

Электроприёмники I категории – электроприёмники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприёмников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприёмники II категории – электроприёмники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприёмники III категории – все остальные электроприёмники, не подпадающие под определения первой и второй категорий.

1.2.19. Электроприёмники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприёмников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприёмников и в качестве второго независимого источника питания для остальных электроприёмников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприёмников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

1.2.20. Электроприёмники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприёмников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

1.2.21. Для электроприёмников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Таким образом, становиться очевидным, что системы СБГЭ в части бесперебойного питания направлены, прежде всего, на удовлетворение нужд в качестве и надёжности электропитания потребителей 1 (первой) категории и особой группы первой категории, а в части гарантированного питания – потребителей 2 (второй) категории.

Обращайтесь за более детальными консультациями или подбором оборудования.

Чем обусловлена необходимость использования
В наш век быстро развивающихся информационных технологий значительно повышается нагрузка на имеющиеся сети электроснабжения. Становится крайне трудно гарантировать бесперебойность работы телекоммуникационных и компьютеризированных систем, учащаются случаи падений напряжения и аварий в электросетях. Создание сети надежного электропитания позволит исключить простои в работе и потерю важных данных из-за прекращения подачи электроэнергии, продлит срок службы технической инфраструктуры компании, и, в конечном итоге, позволит сэкономить на издержках.

Надежное электрообеспечение коммерческих, производственных и государственных предприятий возможно с помощью систем гарантированного и бесперебойного электропитания. В случае принятия решения об оснащении объекта системой гарантированного или бесперебойного электропитания, нужно определиться с количеством и категорией потребителей, которым предназначается гарантированное или бесперебойное питание, и с длительностью времени, во время которого будет обеспечиваться автономное электропитание.

Выписка из ПУЭ (Правила устройства электроустановок) дает определения основных понятий, касающихся систем гарантированного и бесперебойного питания:

Потребители электроэнергии - это единичный электроприемник (ЭП) или группа ЭП, объединенная единым технологическим процессом и находящаяся на некоторой территории.

Виды злектроприемников:

  • ЭП 1 категории являются объекты, перерыв в электропитании которых сопряжен с:

Угрозой жизни людей;
- угрозой государственной безопасности;
- значительным материальным ущербом;
- расстройством важных технологических процессов;
- нарушением работы объектов особой важности коммунального хозяйства;
- нарушением работы систем связи и телекоммуникаций.
ЭП 1 категории следует обеспечивать электропитанием с помощью двух независимых и взаимно резервирующих источников, допускается кратковременное прекращение электропитания только для автоматического перехода на резервное питание.

  • ЭП1 категории особой группы являются объекты, от бесперебойной работы которых зависит возможность предотвращения:

Угрозы жизни людей;
- угрозы взрывов и пожаров.
Особую группу следует обеспечивать дополнительным, третьим независимым и взаимно резервирующим источником питания.

  • ЭП 2 категории являются объекты, перебои в электроснабжении которых приводят к:

Массовому сбою выпуска продукции;
- простоям (работников, оборудования и промышленного транспорта);
- нарушению работы городского и сельского населения.
ЭП 2 категории в обычном режиме следует обеспечивать электроснабжением от двух взаимно резервирующих независимых питающих источников.

  • ЭП 3 категории являются все остальные объекты, не требующие резервного питания. Электропитание осуществляется от одного источника с условием, что срок проведения ремонтных работ электрических сетей не превысит 1 сутки.

Система гарантированного электропитания

При использовании на объекте только дизель-генераторной установки (ДГУ) в качестве резервного источника, электропитание объекта осуществляется с применением схемы гарантированного электропитания.
Гарантированное электропитание осуществляет подачу электроэнергии при прекращении подачи напряжения в основной сети питания потребителям 1 категории (согласно гл. 1.2.17 ПУЭ), при этом параметры электрического тока должны соответствовать ГОСТ13109-87.

Система гарантированного электропитания:

  • Обеспечивает гарантированное электроснабжение подключенных потребителей.
  • Автоматически запускает (не более чем с 3 попыток) дизель-генератор по истечении 9 секунд с момента возникновения отклонений значений базовой питающей сети от требований ГОСТ13109-87 и при полном прекращении подачи электроэнергии.
  • Обеспечивает автоматическую передачу нагрузки внешней сети на дизель-генератор и обратно.
  • Сигнализирует на диспетчерский пост при возникновении аварийных событий с оборудованием ДГУ.

Система гарантированного электропитания объекта должна соответствовать следующим требованиям:

  • Показатель наработки на отказ дизель-генераторными установками должен быть не менее 40000 часов.
  • Загрузка ДГУ по мощности должна быть более 50%, при меньшей загрузки ДГУ рекомендуется только кратковременная эксплуатация, а загрузка на 30% повлечет за собой отказ поставщика в предоставлении гарантийных обязательств на оборудование.
  • Экстренный старт и прием нагрузки при выходе из режима ожидания в горячем резерве не может превышать 9 секунд.
  • Необходимо создать условия для регламентного обслуживания и ремонта дизель-генераторной установки при работающей системе электропитания.
  • Обязателен удаленный контроль работы ДГУ.
  • Полностью исключить параллельную работу ДГУ и внешней системы электропитания.

Система бесперебойного электропитания

При использовании на объекте источника бесперебойного питания (ИБП) в качестве резервного источника, электропитание объекта осуществляется с применением схемы бесперебойного электропитания. Потребители, использующиеся электропитание от ИБП при прекращении подачи электричества по основным электросетям, называются потребителями бесперебойного электропитания.

Система бесперебойного электропитания обеспечивает потребителей 1 категории особой группы электроэнергией без разрыва синусоиды питающего напряжения, соответствующей ГОСТ13109-87 (согласно гл. 1.2.17 ПУЭ).

Системой бесперебойного электропитания обеспечивается:

  • Бесперебойное электроснабжение без разрыва синусоиды потребителей электроэнергии, подключенных через ИБП.
  • Полная регулировка напряжения на выходе.
  • Чистая синусоидальная форма выходного напряжения.
  • Большой КПД системы.
  • Совместимость с ДГУ с коэффициентом запаса мощности менее 1,3.
  • Максимальная защита от отключения, перепадов, всплесков и скачков напряжения.
  • Возможность подключать параллельно несколько ИБП.
  • Автономная поддержка электрической нагрузки 20 минут.
  • Бесперебойное переключение нагрузки через внешний и встроенный байпас на электропитание от внешних электросетей.
  • Наличие гальванической развязки цепей (на входе и выходе).

Создавая систему бесперебойного электропитания на объекте, необходимо учитывать определенные требования:

  • Из-за одиночного отказа любого из элементов СБП работоспособность системы не должна быть полностью нарушена.
  • СБП должна иметь срок службы, составляющие не менее 10 лет.
  • Нейтральные кабеля входящих электрических сетей и трансформаторные подстанции подстанций не должны быть перегружены.
  • Регламентированное техобслуживание и ремонт ИБП должны проводиться без отключения системы электроснабжения здания.
  • Мониторинг параметров ИБП должен быть дистанционным.
  • По истечении ресурсного времени работы автономных аккумуляторов при отсутствии внешнего напряжения технологические процессы должны быть завершены корректно.

Совместное использование на объекте схем бесперебойного и гарантированного питания

При оснащении объекта дизель-генераторной установкой и источником бесперебойного электропитания, электропитание объекта осуществляется с применением схемы повышенной надежности с применением бесперебойного и гарантированного электропитания.

При потере напряжения основной питающей сети автоматически происходит подача сигнала на запуск ДГУ. Запуск ДГУ происходит в течение 5-10 секунд, когда напряжение потребителям не подается. При выходе ДГУ в режим номинальной частоты и напряжения электропитание потребителей восстанавливается.

В момент запуска ДГУ происходит переключение ИБП на аккумуляторные батареи. Электропитание потребителей во время пуска дизель-генератора происходит от батарей ИБП. Таким образом, исключается разрыв синусоиды питающего напряжения сети.

В момент возврата напряжения внешней энергосети происходит отключение потребителей от ДГУ и подключение к внешнему источнику. Кратковременно потребители гарантированного электропитания остаются без напряжения; происходит остановка дизель-генератора и он переходит в дежурный режим.

Возможность питания от ДГУ в течение определенного времени определяется удельным расходом топлива, зависящим от нагрузки, и количеством топлива в баке. Возможно дозаправить ДГУ во время работы. В случае окончания топлива в топливном баке блок автоматики ДГУ произведет останов дизель-генераторной установки.

Создавая схему бесперебойного и гарантированного электропитания на объекте, необходимо учитывать следующие требования:

  • Применение ИБП класса on-line, так как нагрузка будет защищена от всех имеющихся неполадок электросети.
  • Мощность ИБП должна соответствовать нагрузке.
  • В комплекте с ИБП обязательно должны быть аккумуляторные батареи. Время аккумуляторного резервирования должно быть не менее 5-10 минут.
  • В целях понижения нелинейного искажения тока, возникающего от ИБП, следует использовать ИБП с выпрямителями на IGBT-транзисторах с активными или с 12- пульсными выпрямителями.
  • Рекомендован выбор ИБП, которые плавно переходят на питание сети с батареи.
  • Соотношение мощностей ДГУ и ИБП должно быть равно 1,3.
  • ДГУ должен быть укомплектован электронным регулятором скорости приводного двигателя и автоматическим регулятором выходного напряжения

Современное оборудование (компьютеры, активное оборудование вычислительных сетей, телекоммуникационная аппаратура, банковская и медицинская техника, системы автоматики на предприятиях) является чувствительным к качеству электроэнергии и его подключение к существующей системе электропитания связано с повышенным риском нарушения его рабочего режима, а в ряде случаев – с риском выхода из строя. Чтобы обеспечить непрерывность процессов, можно использовать:

  • системы бесперебойного электропитания (СБЭ) на базе источников бесперебойного питания (ИБП, UPS)
  • системы гарантированного электропитания (СГЭ) на базе дизельгенераторных электростанций (ДЭС, ДГУ)
  • системы бесперебойного и гарантированного электропитания, как сочетание СГЭ и СБЭ
В текущих условиях вопрос надёжности электроснабжения усугубляется проблемами, связанными с качеством электроэнергии, поставляемой потребителям по распределительным сетям общего назначения.

По мере развития информационных технологий возникла необходимость в выработки общих решений и принципов организации электроснабжения ЦОД.

Одним из важных аспектов развития современного общества являются информационные технологии. Для создания высокопроизводительной, отказоустойчивой информационной инфраструктуры в настоящее время применяются комплексные централизованные системы – центры обработки данных (ЦОД). В работе ЦОД, помимо собственно систем обработки и хранения данных, определяющую роль играют инженерные системы, обеспечивающие его нормальное функционирование, в том числе система электроснабжения.

Для регламентирования инженерной составляющей ЦОД в России рядом крупных организаций, прежде всего банков, были разработаны собственные ведомственные нормы проектирования, где частично рассмотрен вопрос о электроснабжении ЦОД - в частности: «ВНП 001-01/ Банк России «Здания учреждений ЦБ РФ»; «0032520.09.01.01.03.ЕТ.01.01/ ОАО Банк ВТБ «Единые требования по обеспечению подразделений ОАО Банк ВТБ бесперебойным электроснабжением средств связи и вычислительной техники», ОАО Сбербанк России «Методика построения систем энергоснабжения объектов Сбербанка России N°979-р» др.

В апреле 2005 г. Ассоциация изготовителей оборудования для передачи данных выпустила TIA-942 - первый стандарт на телекоммуникационную инфраструктуру центров обработки данных (Telecommunications Infrastructure Standards for Data Centres), в котором выдвинуты и систематизированы требования к инфраструктуре ЦОД.

Предназначенный для использования проектировщиками ЦОД на ранней стадии строительства и оборудования здания, стандарт TIA-942 регламентирует:

  • требования к месту расположения дата-центра и его структуре;
  • требования к архитектурно-строительным решениям;
  • требования к кабельным сетям;
  • требования к надежности;
  • требования к параметрам рабочей среды.


В соответствии с TIA-942 все ЦОДы разделены на 4 уровня по степени резервирования инфраструктуры (надежности):

Уровень 1 – базовый. Резервирование отсутствует, для плановых и ремонтных работ необходимо отключение всей системы.
Уровень 2 – с резервированием. Резервирование реализовано по схеме «N+1», однако для технического обслуживания необходимо отключение системы.
Уровень 3 – с возможностью параллельного проведения ремонтов. Позволяет осуществлять плановую деятельность без нарушения работоспособности объекта, однако при отказе некоторых элементов системы, возможны перерывы в нормальном ходе работы.
Уровень 4 – отказоустойчивый. Предусматривает возможность проведения любой плановой деятельности, а также обеспечивает возможность выдержать по крайней мере один отказ без последствий для критически важной нагрузки. Это означает наличие двух отдельных систем бесперебойного электропитания, каждая из которых имеет резервирование «N+1».

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации