Как устроен энергоблок атомной электростанции. Все атомные электростанции россии списком

ТАСС-ДОСЬЕ. На 30 ноября 2017 года в Бангладеш запланирована церемония начала строительства атомной электростанции "Руппур" по российскому проекту. Генеральный контракт на ее сооружение госкорпорация "Росатом" получила 25 декабря 2015 года. Редакция ТАСС-ДОСЬЕ подготовила материал о том, как Россия возводит АЭС за рубежом.

Атомные проекты СССР и России за рубежом

СССР осуществлял работы по возведению АЭС в других странах с начала 1960-х гг. В октябре 1966 года была введена в эксплуатацию первая сооруженная при участии Советского Союза зарубежная станция - в Райнсберге, ГДР (закрыта в 1990 г.). В 1970-х - начале 1980-х гг. производственные объединения "Атомэнергоэкспорт" и "Зарубежатомэнергострой" вели строительство АЭС в Болгарии, Финляндии, Чехословакии, Венгрии, на Кубе и т. д. Однако в начале 1990-х гг. многие из этих проектов были либо приостановлены, либо полностью закрыты.

В настоящее время зарубежную деятельность в сфере атомной энергетики осуществляют компании, входящие в структуру госкорпорации "Росатом". Росатом занимает первое место в мире по числу проектов строительства АЭС за рубежом - 34 энергоблока в 12 странах по всему миру. Помимо сооружения АЭС Россия осуществляет экспорт ядерного топлива (РФ занимает 17% мирового рынка) и услуг в области обогащения природного урана, занимается геологоразведкой и добычей урана за рубежом, созданием исследовательских ядерных центров в разных странах и пр. По словам генерального директора госкорпорации Алексея Лихачева, общая стоимость портфеля зарубежных заказов на десятилетний период по итогам 2016 года превысила $133 млрд. По сравнению с 2015 годом он увеличился на 20% (с 110,3 млрд).

Тяньваньская АЭС (Китай)

В 1992 году РФ и Китай подписали межправительственное соглашение о совместном строительстве АЭС в восточной провинции Цзянсу. В декабре 1997 года между "Атомстройэкспортом" (в декабре 2015 года вошел в Группу компаний ASE - инжиниринговый дивизион Росатома) и Цзянсуской корпорацией ядерной энергетики (Jiangsu Nuclear Power Corporation, JNPC) было заключено соглашение о возведении первой очереди Тяньваньской АЭС, состоящей из двух водо-водяных энергетических реакторов мощностью 1 тыс. МВт каждый (ВВЭР-1000). Работы начались в 1998 году. Пуск первого энергоблока состоялся в декабре 2005 года, второго - в сентябре 2007-го. По оценке правительства РФ, общая стоимость строительства первой очереди составила €1,8 млрд.

В марте 2010 года JNPC и "Атомстройэкспорт" подписали рамочный контракт на строительство второй очереди Тяньваньской АЭС (третьего и четвертого энергоблоков) на основе проекта ВВЭР-1000. Работы по возведению третьего блока АЭС начались в декабре 2012 года. В сентябре 2017-го был завершен пуск реакторной установки. Начало его коммерческой эксплуатации запланировано на февраль 2018 года. Строительство четвертого энергоблока началось в сентябре 2013-го. Его ввод в эксплуатацию намечен на декабрь 2018 года. Стоимость работ по возведению второй очереди АЭС составила €1,3 млрд.

Пятый и шестой блоки Китай начал строить по своему проекту. В настоящее время между Россией и КНР ведутся переговоры о совместном возведении седьмого и восьмого блоков Тяньваньской АЭС.

АЭС "Куданкулам" (Индия)

В 1998 году Росатом и Индийская корпорация по атомной энергии (Nuclear Power Corporation of India Limited, NPCIL) подписали соглашение о строительстве двух энергоблоков АЭС "Куданкулам" с реакторами мощностью 1 тыс. МВт каждый (ВВЭР-1000) в индийском штате Тамилнад. Для этого Индии был выделен кредит в размере около $2,6 млрд. Первый энергоблок был окончательно передан Индии в августе 2016 года, второй 31 марта 2017-го был переведен в режим коммерческой эксплуатации. В качестве генподрядчика выступила компания "Атомстройэкспорт".

В апреле 2014 года между Россией и Индией была достигнута договоренность о сооружении второй очереди АЭС - третьего и четвертого энергоблоков на основе проекта ВВЭР-1000. Предполагаемая стоимость - около $6,4 млрд, из них 3,4 млрд будут получены из российских кредитов. Ввод блоков в эксплуатацию запланирован на 2020-2021 гг.

1 июня 2017 года группа компаний ASE и NPCIL подписали генеральное рамочное соглашение по строительству третьей очереди (пятого и шестого блоков) АЭС "Куданкулам" на основе проекта ВВЭР-1000, а также межправительственный кредитный протокол, необходимый для реализации проекта. По словам министра финансов РФ Антона Силуанова, в 2018 году Индии будет представлен кредит на сумму $4,2 млрд сроком на 10 лет. 31 июля 2017 года стороны заключили контракты на первоочередные проектные работы, рабочее проектирование и поставку основного оборудования для пятого и шестого блоков.

АЭС "Бушер" (Иран)

25 августа 1992 года Россия и Иран заключили соглашение о продолжении строительства иранской АЭС недалеко от города Бушер на юге страны (было начато в 1975 году западногерманским концерном, но прервано в 1979-м после начала исламской революции). Работы по сооружению АЭС были возобновлены в 1995 году, в 1998-м управление строительством перешло к компании "Атомстройэкспорт". АЭС была подключена к сети в сентябре 2011 года, официальная передача Ирану первого энергоблока состоялась в сентябре 2013-го.

В ноябре 2014 года был подписан контракт на сооружение по российской технологии второй очереди мощностью 2 тыс. МВт (третьего и четвертого энергоблоков с реакторами ВВЭР-1000) АЭС "Бушер". Стоимость этого строительства составила около $10 млрд. Генподрядчиком является Группа компаний ASE. Церемония закладки первого камня в строительство АЭС состоялась в сентябре 2016 года. В октябре 2017-го был дан старт строительно-монтажным работам на котловане основных зданий второй очереди станции.

Островецкая АЭС (Белоруссия)

В 2009 году Белоруссия обратилась к РФ с предложением о сооружении атомной электростанции. 15 марта 2011 года стороны подписали соглашение о сотрудничестве в строительстве первой в стране АЭС. В июле 2012 года между российским "Атомстройэкспортом" и белорусским ГУ "Дирекция строительства атомной электростанции" был заключен генконтракт на сооружение двух энергоблоков суммарной мощностью до 2,4 тыс. МВт (по проекту ВВЭР-1200). В ноябре 2013 года начались работы по строительству АЭС, оно ведется недалеко от г. Островец Гродненской области. Первый энергоблок станции планируется ввести в эксплуатацию в 2019 году, второй - в 2020-м. Генеральным подрядчиком строительства АЭС является "Атомстройэкспорт".

На сооружение АЭС РФ предоставила Белоруссии кредит в $10 млрд. Предполагается, что он покроет 90% затрат на сооружение АЭС. Общая стоимость объекта, согласно расчетам, не должна превысить $11 млрд.

АЭС "Аккую" (Турция)

12 мая 2010 года Россия и Турция заключили межправсоглашение о строительстве первой турецкой АЭС "Аккую" в провинции Мерсин на юго-востоке страны. Документ предусматривает сооружение четырех энергоблоков мощностью 1,2 тыс. МВт каждый (с реакторами ВВЭР-1200). Заказчиком работ по созданию АЭС, а также владельцем атомной станции, включая выработанную электроэнергию, стала российская проектная компания Akkuyu Nuclear. В настоящее время почти 100% ее акций владеют компании Росатома ("Росэнергоатом", "Русатом Энерго Интернешнл").

В феврале 2017 года Турецкое агентство по атомной энергии (регулирующее ведомство) одобрило проектные параметры площадки АЭС. Начало работ по строительству запланировано на конец 2017 года. Предполагается, что первый энергоблок будет введен в эксплуатацию к 2023 году. Общая стоимость проекта оценивается в $22 млрд.

АЭС "Ханхикиви" (Финляндия)

В декабре 2013 года между компанией "Русатом оверсиз" (ныне - "Русатом Энерго Интернешнл") и финской фирмой Fennovoima был подписан контракт на строительство в Финляндии одноблочной АЭС "Ханхикиви" (в Пюхяйоки, область Похьойс-Похьянмаа в центральной части страны) с реактором ВВЭР-1200. Доля "Росатома" в этом проекте составляет 34%. Его общая стоимость оценивается примерно в €6,5-7 млрд. В 2016 г. начались подготовительные работы на площадке АЭС. Ожидается, что Fennovoima получит лицензию на строительство станции в 2018 году. Введение в строй запланировано на 2024 год.

АЭС "Пакш" (Венгрия)

В январе 2014 года между Россией и Венгрий было подписано межправительственное соглашение о сотрудничестве в области использования атомной энергии в мирных целях, предусматривающее строительство силами Росатома третьей очереди (пятого и шестого энергоблоков) венгерской АЭС "Пакш". В настоящее время на этой станции, построенной по советскому проекту, работают четыре энергоблока с реакторами типа ВВЭР-440. В 2005-2009 гг. "Атомстройэкспорт" осуществил программу продления срока их работы (ожидается, что они будут эксплуатироваться до 2032-2037 гг.) и повышения их мощности (до 2 тыс. МВт) на общую сумму более $12 млн.

В декабре 2014 года "Росатом" и венгерская компания MVM подписали контракт на постройку пятого и шестого блоков АЭС суммарной мощностью до 2,4 тыс. МВт (с реакторами ВВЭР-1200). В апреле 2015 года строительство АЭС одобрила Еврокомиссия. Стоимость проекта по сооружению третьей очереди оценивается в €12,5 млрд. При этом Россия согласилась оплатить 80% расходов, предоставив Венгрии кредит на €10 млрд по льготной ставке на 30 лет. Работы должны начаться в 2018 году.

АЭС "Эд-Дабаа" (Египет)

В ноябре 2015 года Россия и Египет подписали межправительственное соглашение, в соответствии с которым Росатом построит первую египетскую АЭС в составе четырех энергоблоков мощностью 1200 МВт каждый (реакторы ВВЭР-1200). Тогда же стороны заключили соглашение о предоставлении Египту государственного экспортного кредита объемом $25 млрд на возведение АЭС, получившей название "Эд-Дабаа". Атомная электростанция будет сооружена на северном побережье страны в 3,5 км от Средиземного моря (в районе г. Эль-Аламейн). Проект планируется реализовать за 12 лет. Ожидается, что пуск первого блока АЭС состоится в 2024 году. Выплаты Египтом по кредиту начнутся в октябре 2029 года. В ноябре 2017-го официальный представитель египетского минэнерго Айман Хамза заявил, что все разрешения на строительство в Египте АЭС по российскому проекту получены.

В соответствии с Энергетической стратегией России до 2030 года и Генеральной схемой размещения объектов электроэнергетики России до 2020 года с учетом перспективы до 2030 года Концерн «Росэнергоатом» обеспечивает рост доли атомной энергии в энергобалансе страны при обеспечении необходимого уровня безопасности, в том числе за счет сооружения новых блоков атомных электростанций.

В настоящее время на атомных станциях Концерна продолжаются работы по сооружению ПАТЭС и 4-х новых энергоблоков АЭС*:

  • Курская АЭС-2 - 2 блока
  • Нововоронежская АЭС-2 - 1 блок (№2 НВ АЭС или №7 НВ АЭС)
  • Ленинградская АЭС-2 - 1 блок (№2)

Сооружение ведется на основании договоров генподряда с инжиниринговыми компаниями, такими как АО ИК «АСЭ», АО «Атомэнергопроект», ТИТАН-2. Выбор генподрядных и подрядных организаций осуществлялся в соответствии с требованиями Единого отраслевого стандарта закупок Госкорпорации «Росатом» .

Работы по сооружению новых энергоблоков в России ведутся на следующих площадках:

КУРСКАЯ АЭС-2

Расположение: площадка Макаровка, Курчатовский район (Курская обл.)

Тип реактора: ВВЭР-ТОИ
Количество энергоблоков: 2 (4 по проекту)

ПЛАВУЧАЯ АЭС "АКАДЕМИК ЛОМОНОСОВ"

Расположение: г. Певек (Чукотский автономный округ)

Тип реактора: КЛТ-40С
Количество энергоблоков: 1

Первая в мире плавучая атомная теплоэлектростанция (ПАТЭС) оснащена двумя судовыми реакторами типа КЛТ-40С. Аналогичные реакторные установки имеют большой опыт успешной эксплуатации на атомных ледоколах «Таймыр» и «Вайгач» и лихтеровозе «Севморпуть». Электрическая мощность станции составит 70 МВт. Плавучий энергоблок сооружается промышленным способом на судостроительном заводе и доставляется к месту размещения морским путем в полностью готовом виде. На площадке размещения строятся только вспомогательные сооружения, обеспечивающие установку плавучего энергоблока и передачу тепла и электроэнергии на берег. Согласно проекту, перегрузка топлива будет производиться раз в 7 лет, для этого станция будет буксироваться на завод-изготовитель.

Строительство первого плавучего энергоблока началось в 2007 году на ОАО «ПО «Севмаш», в 2008 году проект был передан ОАО «Балтийский завод» в Санкт-Петербурге. 30 июня 2010 года состоялся спуск на воду плавучего энергоблока. В июле 2016 г. на первом в мире плавучем энергоблоке начались швартовные испытания.

19 мая 2018 года единственный в мире атомный плавучий энергетический блок (ПЭБ) «Академик Ломоносов», покинувший 28 апреля 2018 г. территорию Балтийского завода, успешно пришвартовался в Мурманске, на площадке ФГУП «Атомфлот» (дочернее подразделение Росатома), где состоится загрузка ядерного топлива.

(*) Без учета объектов Балтийской АЭС.

Строительство АЭС.

Выбор площадки

Одним из основных требований при оценке возможности строительства АЭС является обеспечение безопасности её эксплуатации для окружающего населения, которая регламентируется нормами радиационной безопасности. Одним из мероприятий защиты окружающей среды — территории и населения от вредных воздействий при эксплуатации АЭС является организация вокруг неё санитарно-защитной зоны. При выборе места строительства АЭС должна учитываться возможность создания санитарно-защитной зоны, определяемой кругом, центром которого является вентиляционная труба АЭС. В санитарно-защитной зоне запрещается проживать населению. Особое внимание должно быть обращено на исследование ветровых режимов в районе строительства АЭС с тем, чтобы располагать атомную электростанцию с подветренной стороны по отношению к населённым пунктам. Исходя из возможности аварийной протечки активных жидкостей, предпочтение отдается площадкам с глубоким стоянием грунтовых вод.
При выборе площадки для строительства атомной электростанции большое значение имеет техническое водоснабжение. Атомная электростанция — крупный водопользователь. Потребление воды АЭС незначительно, а использование воды велико, то есть в основном вода возвращается в источник водоснабжения. К АЭС, так же как и ко всем строящимся промышленным сооружениям, предъявляются требования по сохранению окружающей среды При выборе площадки для строительства атомной электростанции необходимо руководствоваться следующими требованиями:

  • земли, отводимые для сооружения АЭС, непригодны или малопригодны для сельскохозяйственного производства;
  • площадка строительства располагается у водоёмов и рек, на прибрежных незатапливаемых паводковыми водами территориях;
  • грунты площадки допускают строительство зданий и сооружений без проведения дополнительных дорогостоящих мероприятий;
  • уровень грунтовых вод находится ниже глубины заложения подвалов зданий и подземных инженерных коммуникаций и на водопонижение при строительстве АЭС не требуется дополнительных затрат;
  • площадка имеет относительно ровную поверхность с уклоном, обеспечивающим поверхностный водоотвод, при этом земляные работы сведены к минимуму.

Площадки строительства АЭС, как правило, не допускается располагать:

  • в зонах активного карста;
  • в районах тяжёлых (массовых) оползней и селевых потоков;
  • в районах возможного действия снежных лавин;
  • в районах заболоченных и переувлажнённых с постоянным притоком напорных грунтовых вод,
  • в зонах крупных провалов в результате горных выработок;
  • в районах, подверженных воздействию катастрофических явлений, как цунами, землетрясение и т. п.
  • в районах залегания полезных ископаемых;

Для определения возможности строительства АЭС в намеченных районах и сравнения вариантов по геологическим, топографическим и гидрометеорологическим условиям на стадии выбора площадки проводятся конкретные изыскания по каждому рассматриваемому варианту размещения электростанции.
Инженерно-геологические изыскания проводятся в два этапа. На первом этапе собираются материалы по ранее проведённым изысканиям в рассматриваемом районе и определяется степень изученности предполагаемого места строительства. На втором этапе в случае необходимости проводятся специальные инженерно-геологические изыскания с бурением скважин и отбором грунтов, а также рекогносцировочное геологическое обследование площадки. По результатам камеральной обработки собранных данных и дополнительных изысканий должна быть получена инженерно-геологические характеристика района строительства, определяющая:

  • рельеф и геоморфологию территории;
  • стратиграфию, мощность и литологический состав коренных и четвертичных отложений, распространённых в районе до глубины 50—100 м;
  • количество, характер, отметку залегания и условия распространения отдельных водоносных горизонтов в пределах общей глубины;
  • характер и интенсивность физико-геологических процессов и явлений.

При проведении инженерно-геологических изысканий на стадии выбора площадки собираются сведения о наличии местных строительных материалов — разрабатываемых карьерах и месторождениях камня, песка, гравия и других строительных материалов. В этот же период определяются возможности использования подземных вод для технологического и хозяйственно-питьевого водоснабжения. При проектировании атомных электростанций, так же как и других крупных промышленных комплексов, выполняются ситуационные планы строительства, схемы генеральных планов и генеральные планы промышленной площадки АЭС.

Объёмно-планировочные решения зданий

Целью проектирования атомных электростанций является создание наиболее рационального проекта. Основные требования, которым должны отвечать здания АЭС:

  • удобство для выполнения основного технологического процесса, для которого предназначены (функциональная целесообразность здания);
  • надежность при воздействии окружающей среды, прочность и долговечность (техническая целесообразность здания);
  • экономичность, но не в ущерб долговечности (экономическая целесообразность).
  • эстетичность (архитектурно-художественная целесообразность);

Компоновку АЭС создает коллектив проектировщиков разных специальностей.

Строительные конструкции зданий и сооружений

В состав атомной электростанции входят здания и сооружения различного назначения и соответственно различного конструктивного выполнения. Это — многоэтажное и многопролетное здание главного корпуса с массивными конструкциями из предварительно-напряжённого железобетона, ограждающими радиоактивный контур; отдельно стоящие здания вспомогательных систем, например химводоочистка, дизель-генераторная, азотная станция, обычно выполненных в сборных железобетонных типовых конструкциях; подземные каналы и туннели, проходные и непроходные для размещения кабельных потоков и трубопроводов связи между системами; надземные эстакады, соединяющие между собой главный корпус и вспомогательные здания и сооружения, а также здания административного санитарно-бытового корпуса. Наиболее сложным и ответственным зданием атомной электростанции является главный корпус, который представляет собой систему сооружений, образованных в общем случае каркасными строительными конструкциями и массивами реакторного отделения.

Особенности инженерного оборудования

Особенностью АЭС, как и любых зданий ядерных установок, является наличие в процессе эксплуатации ионизирующих излучений. Этот главный отличительный фактор необходимо учитывать при проектировании. Основным источником излучений на АЭС является ядерный реактор, в котором происходит реакция деления ядер горючего. Эта реакция сопровождается всеми известными видами излучений.

Атомная энергетика - одна из самых развивающихся областей промышленности, что продиктовано постоянным ростом потребляемой электроэнергии. Очень многие страны имеют свои источники выработки энергии при помощи «мирного атом».

Карта атомных электростанции России (РФ)

Россия входит в это число. История АЭС России начинается с далекого 1948 года, когда изобретатель советской атомной бомбы И.В. Курчатов инициировал проектирование первой атомной электростанции на территории тогда еще Советского Союза. Атомные станции России берут свое начало с постройки Обнинской АЭС, которая стала не только первой в России, но первой в мире атомной станцией.


Россия уникальная страна, которая обладает технологией полного цикла атомной энергетики, что подразумевает под собой все этапы, от добычи руды до конечного получения электроэнергии. При этом благодаря своим большим территориям, Россия обладает достаточным запасом урана, как в виде земных недр, так и в виде оружейного оснащения.

На настоящий момент ядерные электростанции в России включают в себя 10 действующих объектов, которые обеспечивают мощность в 27 ГВт (ГигаВатт), что составляет примерно 18% в энергетическом балансе стране. Современное развитие технологии позволяет сделать атомные электростанции России безопасными для окружающей среды объектами, несмотря на то, что использование атомной энергии является наиболее опасным производством с точки зрения промышленной безопасности.


Карта ядерных электростанции (АЭС) России включает в себя не только действующие станции, но также строящиеся, которых насчитывается порядка 10 штук. При этом к строящимся относятся не только полноценные атомные станции, но также перспективные разработки в виде создания плавучей атомной станции, которая отличается мобильностью.

Список атомных электростанций России имеет следующий вид:



Современное состояние атомной энергетики России позволяет говорить о наличии большого потенциала, который в обозримом будущем может реализоваться в создании и проектировании реакторов нового типа, позволяющих вырабатывать большие объемы энергии при меньших затратах.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации