Как найти момент инерции двух тел. Приложение

Приложение. Момент инерции и его вычисление.

Пусть твёрдое тело вращается вокруг оси Z (рисунок 6). Его можно представить как неизменную с течением времени систему разных материальных точек m i , каждая из которых движется по окружности радиусом r i , лежащей в плоскости, перпендикулярной оси Z. Угловые скорости всех материальных точек одинаковы. Моментом инерции тела относительно оси Z называется величина:

где – момент инерции отдельной материальной точки относительно оси ОZ. Из определения вытекает, что момент инерции – аддитивная величина , т. е. момент инерции тела, состоящего из отдельных частей, равен сумме моментов инерции частей.

Рисунок 6

Очевидно, [I ] = кг×м 2 . Важность понятия момента инерции выражается в трёх формулах:

; ; .

Первая из них выражает момент импульса тела, которое вращается вокруг неподвижной оси Z (полезно эту формулу сравнить с выражением для импульса тела P = mV c , где V c – скорость центра масс). Вторая формула носит название основного уравнения динамики вращательного движения тела вокруг неподвижной оси, т.е., иначе говоря, второго закона Ньютона для вращательного движения (сравним с законом движения центра масс: ). Третья формула выражает кинетическую энергию тела, вращающегося вокруг неподвижной оси (сравним с выражением для кинетической энергии частицы ). Сравнение формул позволяет сделать вывод о том, что момент инерции во вращательном движении играет роль, аналогичную массе в том смысле, что чем больше момент инерции тела, тем меньше угловое ускорение при прочих равных условиях оно приобретает (тело, образно говоря, труднее раскрутить). Реально вычисление моментов инерции сводится к вычислению тройного интеграла и может быть произведено лишь для ограниченного числа симметричных тел и лишь для осей симметрии. Количество осей, вокруг которых может вращаться тело, бесконечно велико. Среди всех осей выделяется та, которая проходит через замечательную точку тела – центр масс (точку, для описания движения которой достаточно представить, что вся масса системы сосредоточена в центре масс и к этой точке приложена сила, равная сумме всех сил). Но осей, проходящих через центр масс, также бесконечно много. Оказывается, что для любого твёрдого тела произвольной формы существуют три взаимно перпендикулярных оси С х, С у, С z , называемые осями свободного вращения , обладающие замечательным свойством: если тело закрутить вокруг любой из этих осей и подбросить вверх, то при последующем движении тела ось останется параллельной самой себе, т.е. не будет кувыркаться. Закручивание вокруг любой другой оси этим свойством не обладает. Значение моментов инерции типичных тел относительно указанных осей приведено ниже. Если ось проходит через центр масс, но составляет углы a, b, g с осями С х, С у, С z соответственно, то момент инерции относительно такой оси равен

I c = I cx cos 2 a + I cy cos 2 b + I cz cos 2 g (*)

Рассмотрим кратко вычисление момента инерции для простейших тел.

1. Момент инерции длинного тонкого однородного стержня относительно оси, проходящей через центр масс стержня и ему перпендикулярной.

Пусть т – масса стержня, l – его длина.

,

Индекс «с » у момента инерции I c означает, что это момент инерции относительно оси, проходящий через точку центра масс (центр симметрии тела), C(0,0,0).

2. Момент инерции тонкой прямоугольной пластинки.

; ;

3. Момент инерции прямоугольного параллелепипеда.


, т. С(0,0,0)

4. Момент инерции тонкого кольца.

;

, т. С(0,0,0)

5. Момент инерции тонкого диска.

В силу симметрии

; ;

6. Момент инерции сплошного цилиндра.

;

В силу симметрии:


7. Момент инерции сплошного шара.

, т. С(0,0,0)

8. Момент инерции сплошного конуса.


, т. С(0,0,0)

где R – радиус основания, h – высота конуса.

Напомним, что cos 2 a + cos 2 b + cos 2 g = 1. Наконец, если ось О не проходит через центр масс, то момент инерции тела может быть вычислен с помощью теоремы Гюйгенса Штейнера

I о = I с + md 2 , (**)

где I о – момент инерции тела относительно произвольной оси, I с – момент инерции относительно параллельной ей оси, проходящей через центр масс,
m
– масса тела, d – расстояние между осями.

Процедура вычисления моментов инерции для тел стандартной формы относительно произвольной оси сводится к следующему.

Наименование параметра Значение
Тема статьи: Момент инерции
Рубрика (тематическая категория) Механика

Рассмотрим материальную точку массой m , которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инœерции J материальной точки относительно оси принято называть скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инœерции системы N материальных точек будет равен сумме моментов инœерции отдельных точек

(76)

К определœению момента инœерции точки

В случае если масса распределœена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объёмы dv, каждый из которых обладает массой dm. В результате получается следующее выражение:

(77)

Для однородного по объёму тела плотность ρ постоянна, и записав элементарную массу в виде

dm = ρdv, преобразуем формулу (70) следующим образом:

(78)

Размерность момента инœерции – кг*м 2 .

Момент инœерции тела является мерой инœертности тела во вращательном движении, подобно тому, как масса тела является мерой его инœертности при поступательном движении.

Момент инœерции - это мера инœертных свойств твердого тела при вращательном движении, зависящая от распределœения массы относительно оси вращения . Иными словами, момент инœерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инœерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инœерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инœерции достаточно прост. Ниже приведены моменты инœерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инœерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска:

Момент инœерции шара радиуса R :

Момент инœерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инœерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инœерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера:

Момент инœерции тела относительно произвольной оси равен сумме момента инœерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инœерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инœерции стержня

Согласно теореме Штейнера, момент инœерции стержня относительно оси O′O′ равен моменту инœерции относительно оси OO плюс md 2 . Отсюда получаем:

Очевидно: момент инœерции неодинаков относительно разных осœей, и в связи с этим, решая задачи на динамику вращательного движения, момент инœерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, к примеру, при конструировании технических устройств, содержащих вращающиеся детали (на желœезнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инœерции этих деталей. При сложной форме тела теоретический расчет его момента инœерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инœерции нестандартной детали опытным путем.

Момент силы F относительно точки O

Момент инерции - понятие и виды. Классификация и особенности категории "Момент инерции" 2017, 2018.

  • - Момент инерции тела относительно произвольной оси.

    Рис.35 Проведем через центр масс С тела произвольные оси Cx"y"z", а через лю­бую точку О на оси Сх" - оси Oxyz, такие, что Оy½½Сy", Oz½½Cz" (рис. 35). Расстояние между осями Cz" и Оz обозначим через d. Тогда но, как видно из рисунка, для любой точки тела или, а. Подставляя... .


  • - Момент инерции тела

    Момент инерции тела – величина, определяющая его инертность во вращательном движении. В динамике поступательного движения инерцию тела полностью характеризует его масса. Влияние собственных свойств тела на динамику вращательного движения оказывается более сложным,... .


  • - Лекция 4-5. Момент силы относительно неподвижной точки и оси. Момент инерции, момент импульса материальной точки и механической системы относительно неподвижной точки и оси.

    Лекция 3. Силы. Масса, импульс материальной точки и механической системы. Динамика поступательного движения в инерциальных системах отсчета. Закон изменения импульса механической системы. Закон сохранения импульса. Динамика изучает движение тел с учетом причин,... .


  • - Момент инерции твердого тела.

    Проанализируем формулу для момента инерции твердого тела. Момент инерции зависит от 1) массы тела, 2) формы и размеров тела, 3) положения оси вращения относительно тела (рис 2) Рис. 2а Рис.2б Итак, момент инерции есть мера инертности тела при вращательном движении,... .


  • - Момент инерции относительно центральной оси называется центральным моментом инерции.

    Момент инерции относительно любой оси равен моменту инерции относительно центральной оси, параллельной данной, плюс произведение площади фигуры на квадрат расстояния между осями. Из формулы видно, что момент инерции относительно центральной оси меньше, чем момент...

  • Относительно неподвижной оси («осевой момент инерции») называется величина J a , равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

    • m i - масса i -й точки,
    • r i - расстояние от i -й точки до оси.

    Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении .

    Если тело однородно, то есть его плотность всюду одинакова, то

    Теорема Гюйгенса-Штейнера

    Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы , формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

    где - полная масса тела.

    Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

    Осевые моменты инерции некоторых тел

    Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
    Тело Описание Положение оси a Момент инерции J a
    Материальная точка массы m На расстоянии r от точки, неподвижная
    Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
    Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
    Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра
    Сплошной цилиндр длины l , радиуса r и массы m
    Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
    Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
    Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
    Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
    Шар радиуса r и массы m Ось проходит через центр шара
    Конус радиуса r и массы m Ось конуса
    Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
    Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
    Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

    Вывод формул

    Тонкостенный цилиндр (кольцо, обруч)

    Вывод формулы

    Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

    Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

    Толстостенный цилиндр (кольцо, обруч)

    Вывод формулы

    Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

    Момент инерции толстого кольца найдём как интеграл

    Поскольку объём и масса кольца равны

    получаем окончательную формулу для момента инерции кольца

    Однородный диск (сплошной цилиндр)

    Вывод формулы

    Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0), получим формулу для момента инерции цилиндра (диска):

    Сплошной конус

    Вывод формулы

    Разобьём конус на тонкие диски толщиной dh , перепендикулярные оси конуса. Радиус такого диска равен

    где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

    Интегрируя, получим

    Сплошной однородный шар

    Вывод формулы

    Разобъём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

    Масса и момент инерции такого диска составят

    Момент инерции сферы найдём интегрированием:

    Тонкостенная сфера

    Вывод формулы

    Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

    Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

    Тонкий стержень (ось проходит через центр)

    Вывод формулы

    Разобъём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

    Интегрируя, получим

    Тонкий стержень (ось проходит через конец)

    Вывод формулы

    При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l /2. По теореме Штейнера новый момент инерции будет равен

    Безразмерные моменты инерции планет и их спутников

    Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра.

    Центробежный момент инерции

    Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

    где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

    Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции тела .

    Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

    Геометрический момент инерции

    Геометрический момент инерции - геометрическая характеристика сечения вида

    где - расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси .

    Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

    Единица измерения СИ - м 4 . В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см 4 .

    Из него выражается момент сопротивления сечения:

    .
    Геометрические моменты инерции некоторых фигур
    Прямоугольника высотой и шириной :
    Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно
    Круга диаметром

    Центральный момент инерции

    Центральный момент инерции (или момент инерции относительно точки O) - это величина

    Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

    Тензор инерции и эллипсоид инерции

    Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы :

    (1),

    где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

    ,
    .

    Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
    ,
    где - ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины - главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

    ,

    откуда получается уравнение

    Тела относительно какой-либо оси можно найти вычислением. Если вещество в теле распределено непрерывно, то вычисление момента инерции его сводится к вычислению интеграла

    в котором r - расстояние от элемента массы dm до оси вращения.

    Момент инерции тонкого однородного стержня относительно перпендикулярной оси. Пусть ось проходит через конец стержня А (рис. 4.4).

    Для момента инерции можно написать I A = kml 2 , где l - длина стержня, k - коэффициент пропорциональности. Центр стержня С является его центром масс. По теореме Штейнера I A = I C + m (l /2) 2 . Величину I C можно представить как сумму моментов инерции двух стержней, СА и СВ , длина каждого из которых равна l /2, масса m /2, а следовательно, момент инерции равен Таким образом, I C = km (l/ 2) 2 . Подставляя эти выражения в формулу для теоремы Штейнера, получим

    ,

    откуда k = 1/3. В результате находим

    (4.16)

    Момент инерции бесконечно тонкого круглого кольца (окружности). Момент инерции относительно оси Z (рис. 4.5) равен

    I Z = mR 2 , (4.17)

    где R - радиус кольца. Ввиду симметрии I X = I У .

    Формула (4.17) очевидно, дает также момент инерции полого однородного цилиндра с бесконечно тонкими стенками относительно его геометрической оси.

    Рис. 4.5 Рис. 4.6

    Момент инерции бесконечно тонкого диска и сплошного цилиндра. Предполагается, что диск и цилиндр однородны, т. е. вещество распределено в них с постоянной плотностью. Пусть ось Z проходит через центр диска С перпендикулярно к его плоскости (рис. 4.6). Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным радиусом r + dr . Площадь такого кольца dS = 2 prdr . Его момент инерции найдется по формуле (4.17), он равен dI z = r 2 dm. Момент инерции всего диска определяется интегралом Ввиду однородности диска dm = , где S = pR 2 - площадь всего диска. Вводя это выражение под знак интеграла, получим

    (4.18)

    Формула (4.18) дает также момент инерции однородного сплошного цилиндра относительно его продольной геометрической оси.

    Вычисление момента инерции тела относительно оси часто можно упростить, вычислив предварительно момент инерции его относительно точки . Сам по себе момент инерции тела относительно точки не играет никакой роли в динамике. Он является чисто вспомогательным понятием, служащим для упрощения вычислений. Моментом инерции тела относительно точки О называется сумма произведений масс материальных точек, из которых тело состоит, на квадраты их расстояний R до точки О : q = ΣmR 2 . В случае непрерывного распределения масс эта сумма сводится к интегралу q = ∫R 2 dm . Само собой понятно, что момент θ не следует смешивать с моментом инерции I относительно оси. В случае момента I массы dm умножаются на квадраты расстояний до этой оси, а в случае момента θ - до неподвижной точки.


    Рассмотрим сначала одну материальную точку с массой m и с координатами x , у , z относительно прямоугольной системы координат (рис. 4.7). Квадраты расстояний ее до координатных осей Х , Y , Z равны соответственно у 2 + z 2 , z 2 + x 2 , x 2 + у 2 , а моменты инерции относительно тех же осей

    I X = m (y 2 + z 2), I У = m (z 2 + x 2),

    I Z = m (x 2 + y 2).

    Сложим эти три равенства, получим I X + I У + I Z = 2m (x 2 + у 2 + z 2).

    Но х 2 + у 2 + z 2 = R 2 , где R - расстояние точки m от начала координат О. Поэтому

    I X + I У + I Z = . (4.19)

    Это соотношение справедливо не только для одной материальной точки, но и для произвольного тела, так как тело можно рассматривать как совокупность материальных точек. Таким образом, сумма моментов инерции тела относительно трех взаимно перпендикулярных осей, пересекающихся в одной точке О, равна удвоенному моменту инерции того же тела относительно этой точки.

    Момент инерции полого шара с бесконечно тонкими стенками .

    Сначала найдем момент инерции θ относительно центра шара. Очевидно, он равен θ = mR 2 . Затем применяем формулу (4.19). Полагая в ней ввиду симметрии I X = I Y = I Z = I. В результате находим момент инерции полого шара относительно его диаметра

    Момент инерции тела относительно оси и относительно точки. Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки до оси. Чтобы найти момент инерции тела (с непрерывным распределением вещества) относительно оси, надо мысленно разбить его на такие малые элементы, чтобы каждый из них можно было считать материальной точкой бесконечно малой массыdm = dV . Тогда момент инерции тела относительно оси равен интегралу по объёму тела:

    где r – расстояние элементаdm до оси.

    Вычисление момента инерции тела относительно оси часто упрощается, если предварительно вычислить его момент инерции относительно точки . Он вычисляется по формуле, аналогичной (1):

    (2)

    где r – расстояние элементаdm до выбранной точки (относительно которой вычисляется). Пусть эта точка является началом системы координатX , Y , Z (рис. 1). Квадраты расстояний элементаdm до координатных осейX , Y , Z и до начала координат равны соответственноy 2 + z 2 , z 2 + x 2 , x 2 + y 2 , x 2 + y 2 + z 2 . Моменты инерции тела относительно осейX , Y , Z и относительно начала координат

    Из этих соотношений следует, что

    Таким образом, сумма моментов инерции тела относительно трёх любых взаимно перпендикулярных осей, проходящих через одну точку, равна удвоенному моменту инерции тела относительно этой точки.

    Момент инерции тонкого кольца. Все элементы кольцаdm (рис. 2) находятся на одинаковом расстоянии, равном радиусу кольцаR , от его оси симметрии (осьY) и от его центра. Момент инерции кольца относительно осиY

    (4)

    Момент инерции тонкого диска. Пусть тонкий однородный диск массыm с концентрическим отверстием (рис. 3) имеет внутренний и внешний радиусыR 1 иR 2 . Мысленно разобьём диск на тонкие кольца радиусаr , толщиныdr . Момент инерции такого кольца относительно осиY (рис. 3, она перпендикулярна рисунку и не показана), в соответствии с (4):

    Момент инерции диска:

    (6)

    В частности, полагая в (6) R 1 = 0, R 2 = R , получим формулу для вычисления момента инерции тонкого сплошного однородного диска относительно его оси:

    Момент инерции диска относительно его оси симметрии не зависит от толщины диска . Поэтому по формулам (6) и (7) можно вычислять моменты инерции соответствующих цилиндров относительно их осей симметрии.

    Момент инерции тонкого диска относительно его центра также вычисляется по формуле (6), = J y , а моменты инерции относительно осейX иZ равны между собой,J x = J z . Поэтому, в соответствии с (3): 2 J x + J y = 2 J y , J x = J y /2, или

    (8)

    Момент инерции цилиндра. Пусть имеется полый симметричный цилиндр массыm , длины h , внутренний и внешний радиусы которого равныR 1 и R 2 . Найдём его момент инерции относительно осиZ , проведенной через центр масс перпендикулярно оси цилиндра (рис. 4). Для этого мысленно разобьём его на диски бесконечно малой толщиныdy . Один из таких дисков, массойdm = mdy / h , расположенный на расстоянииy от начала координат, показан на рис. 4. Его момент инерции относительно осиZ , в соответствии с (8) и теоремой Гюйгенса – Штейнера

    Момент инерции всего цилиндра

    Момент инерции цилиндра относительно оси Z (оси вращения маятника) найдём по теореме Гюйгенса – Штейнера

    где d – расстояние от центра масс цилиндра до осиZ . В работе 16 этот момент инерции обозначен какJ ц

    (11)

    МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

    Нанесение экспериментальных точек и проведение по ним графика «на глаз», а также определение по графику абсцисс и ординат точек, не отличаются высокой точностью. Её можно повысить, если использовать аналитический метод. Математическое правило построения графика заключается в подборе таких значений параметров «а» и «в» в линейной зависимости вида у = ах + b , чтобы сумма квадратов отклонений у i (рис. 5) всех экспериментальных точек от линии графика была наименьшей (метод «наименьших квадратов» ), т.е. чтобы величина

    (1)

    © 2024 ongun.ru
    Энциклопедия по отоплению, газоснабжению, канализации