Как составить функцию распределения. Непрерывная случайная величина, функция распределения и плотность вероятности

Функция распределения вероятностей и ее свойства.

Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем х, т.е. F(x)=P{X < х}.
Рассмотрим свойства функции F(x).

1. F(-∞)=lim (x→-∞) F(x)=0. Действительно, по определению, F(-∞)=P{X < -∞}. Событие (X < -∞) является невозможным событием: F(-∞)=P{X < - ∞}=p{V}=0.

2. F(∞)=lim (x→∞) F(x)=1, так как по определению, F(∞)=P{X < ∞}. Событие Х < ∞ является достоверным событием. Следовательно, F(∞)=P{X < ∞}=p{U}=1.

3. Вероятность того, что случайная величина примет значение из интервала [Α Β] равна приращению функции распределения вероятностей на этом интервале. P{Α ≤X<Β}=F(Β)-F(Α).

4. F(x 2)≥ F(x 1), если x 2, > x 1 , т.е. функция распределения вероятностей является неубывающей функцией.

5. Функция распределения вероятностей непрерывна слева. FΨ(x o -0)=limFΨ(x)=FΨ(x o) при х→ x o

Различия между функциями распределения вероятностей дискретной и непрерывной случайных величин хорошо иллюстрировать графиками. Пусть, например, дискретная случайная величина имеет n возможных значений, вероятности которых равны P{X=x k }=p k , k=1,2,..n. Если x ≤ x 1 , то F(Х)=0, так как левее х нет возможных значений случайной величины. Если x 1 < x ≤ x 2 , то левее х находится всего одно возможное значение, а именно, значение х 1 .

Значит, F(x)=P{X=x 1 }=p 1 .При x 2 < x ≤ x 3 слева от х находится уже два возможных значения, поэтому F(x)=P{X=x 1 }+P{X=x 2 }=p 1 +p 2 . Рассуждая аналогично,приходим к выводу, что если х k < x≤ x k+1 , то F(x)=1, так как функция будет равна сумме вероятностей всех возможных значений, которая по условию нормировки равна еденице. Таким образом, график функции распределения дискретной случайной величины является ступенчатым. Возможные значения непрерывной величины располагаются плотно на интервале задания этой величины, что обеспечивает плавное возрастания функции распределения F(x), т.е. ее непрерывность.

Рассмотрим вероятность попадания случайной величины в интервал , Δx>0: P{x≤X< x+Δx}=F(x+ Δx)-F(x). Перейдем к пределу при Δx→0:

lim (Δx→0) P{x≤ X < x+Δx}=lim (Δx→0) F(x+Δx)-F(x). Предел равен вероятности того, что случайная величина примет значение, равное х. Если функция F(x) непрерывна в точке х, то lim (Δx→0) F(x+Δx)=F(x), т.е. P{X=x}=0.

Если F(x) имеет разрыв в точке х, то вероятность P{X=x} будет равна скачку функции в этой точке. Таким образом, вероятность появления любого возможного значения для непрерывной величины равна нулю. Выражение P{X=x}=0 следует понимать как предел вероятности попадания случайной величины в бесконечно малую окрестность точки х при P{Α< X≤ Β},P{Α ≤ X< Β},P{Α< X< Β},P{Α ≤ X≤ Β} равны, если Х - непрерывная случайная величина.

Для дискретных величин эти вероятности неодинаковы в том случае, когда границы интервала Α и(или) Β совпадают с возможными значениями случайной величин. Для дискретной случайной величины необходимо строго учитывать тип неравенства в формуле P{Α ≤X<Β}=F(Β)-F(Α).

3. Функция распределения является неубывающей : если , то

4. Функция распределения непрерывна слева : для любого .

Примечание . Последнее свойство обозначает, какие значения принимает функция распределения в точках разрыва. Иногда определение функции распределения формулируют с использованием нестрогого неравенства: . В этом случае непрерывность слева заменяется на непрерывность справа: при . Никакие содержательные свойства функции распределения при этом не меняются, поэтому данный вопрос является лишь терминологическим.

Свойства 1-4 являются характеристическими, т.е. любая функция , удовлетворяющая этим свойствам, является функцией распределения некоторой случайной величины.

Функция распределения задает распределение вероятностей случайной величины однозначно. Фактически, она является универсальным и наиболее наглядным способом описания этого распределения.

Чем сильнее функция распределения растет на заданном интервале числовой оси, тем выше вероятность попадания случайной величины в этот интервал. Если вероятность попадания в интервал равна нулю, то функция распределения на нем постоянна.

В частности, вероятность того, что случайная величина примет заданное значение , равна скачку функции распределения в данной точке:

.

Если функция распределения непрерывна в точке , то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется непрерывным ), то вероятность принять любое заданное значение равна нулю.

Из определения функции распределения вытекает, что вероятность попадания случайной величины в интервал, замкнутый слева и открытый справа, равна:

С помощью данной формулы и указанного выше способа нахождения вероятности попадания в любую заданную точку, легко определяются вероятности попадания случайной величины в интервалы других типов: , и . Далее, по теореме о продолжении меры, можно однозначно продолжить меру на все борелевские множества числовой прямой . Для того, чтобы применить эту теорему, требуется показать, что таким образом определенная на интервалах мера является на них сигма-аддитивной; при доказательстве этого в точности используются свойства 1-4 (в частности, свойство непрерывности слева 4, поэтому отбросить его нельзя).

Генерация случайной величины, имеющей заданное распределение

Рассмотрим случайную величину , имеющую функцию распределения . Предположим, что непрерывна . Рассмотрим случайную величину

.

Легко показать, что тогда будет иметь равномерное распределение на отрезке .

Функцией распределения случайной величины X называется функция F(x), выражающая для каждого х вероятность того, что случайная величина X примет значение , меньшее х

Пример 2.5. Дан ряд распределения случайной величины

Найти и изобразить графически ее функцию распределения. Решение. В соответствии с определением

F(jc) = 0 при х х

F(x) = 0,4 + 0,1 = 0,5 при 4 F{x) = 0,5 + 0,5 = 1 при х > 5.

Итак (см. рис. 2.1):


Свойства функции распределения:

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:

2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси, т.е. при х 2

3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности - равна единице, т.е.

4. Вероятность попадания случайной величины X в интервал равна определенному интегралу от ее плотности вероятности в пределах от а до b (см. рис. 2.2), т.е.


Рис. 2.2

3. Функция распределения непрерывной случайной величины (см. рис. 2.3) может быть выражена через плотность вероятности по формуле:

F(x)= Jp (*)*. (2.10)

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Геометрически свойства / и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс , и полная площадь фигуры , ограниченной кривой распределения и осью абсцисс , равна единице.

Для непрерывной случайной величины X математическое ожидание М(Х) и дисперсия D(X) определяются по формулам:

(если интеграл абсолютно сходится); или

(если приведенные интегралы сходятся).

Наряду с отмеченными выше числовыми характеристиками для описания случайной величины используется понятие квантилей и процентных точек.

Квантилем уровня q (или q-квантилем) называется такое значение x q случайной величины , при котором функция ее распределения принимает значение , равное q, т. е.

  • 100q%-ou точкой называется квантиль X~ q .
  • ? Пример 2.8.

По данным примера 2.6 найти квантиль xqj и 30%-ную точку случайной величины X.

Решение. По определению (2.16) F(xo t3)= 0,3, т. е.

~Y~ = 0,3, откуда квантиль х 0 3 = 0,6. 30%-ная точка случайной величины X , или квантиль Х)_о,з = xoj » находится аналогично из уравнения ^ = 0,7 . откуда *,= 1,4. ?

Среди числовых характеристик случайной величины выделяют начальные v* и центральные р* моменты к-го порядка , определяемые для дискретных и непрерывных случайных величин по формулам:


Определение функции распределения

Пусть $X$ – случайная величина, а $x$ – вероятность распределения этой случайной величины .

Определение 1

Функцией распределения называется функция $F(x)$ удовлетворяющая условию $F\left(x\right)=P(X

Также иначе функцию распределения иногда называются интегральной функцией распределения или интегральным законом распределения.

В общем виде график функции распределения представляет собой график неубывающей функции с областью значений, принадлежащей отрезку $\left$ (причем 0 и 1 обязательно входят в область значений). При этом функция может, как иметь, так и не иметь скачков функции (рис. 1)

Рисунок 1. Пример графика функции распределения

Функция распределения дискретной случайной величины

Пусть случайная величина $X$ является дискретной. И пусть для нее дан ряд её распределения. Для такой величины функцию распределения вероятностей можно записать в следующем виде:

Функция распределения непрерывной случайной величины

Пусть случайная величина $X$ теперь является непрерывной.

График функции распределения такой случайной величины всегда представляет собой неубывающую непрерывную функцию (рис. 3).

Рассмотрим теперь случай, где случайная величина $X$ является смешанной.

График функции распределения такой случайной величины всегда представляет собой неубывающую функцию, которая имеет минимальное значение в 0, максимальное значение в 1, но которая не на всей области определения является непрерывной функцией (то есть имеет скачки в отдельных точках) (рис. 4).

Рисунок 4. Функция распределения смешанной случайной величины

Примеры задач на нахождение функции распределения

Пример 1

Приведен ряд распределений появления события $A$ в трех опытах

Рисунок 5.

Найти функцию распределения вероятностей и построить её график.

Решение.

Так как случайная величина является дискретной, то мы можем пользоваться формулой $\ F\left(x\right)=\sum\limits_{x_i

При $x>3$, $F\left(x\right)=0,2+0,1+0,3+0,4=1$;

Отсюда получаем следующую функцию распределения вероятностей:

Рисунок 6.

Построим ее график:

Рисунок 7.

Пример 2

Проводится один опыт, в котором событие $A$ может, как произойти, так и не произойти. Вероятность того, что данное событие произойдет равно $0,6$. Найти и построить функцию распределения случайной величины.

Решение.

Так как вероятность того, что событие $A$ произойдет равно $0,6$, то вероятность того, что данное событие не произойдет равно $1-0,6=0,4$.

Построим для начала ряд распределения данной случайной величины:

Рисунок 8.

Так как случайная величина является дискретной, найдем функцию распределения по аналогии с задачей 1:

При $x\le 0$, $F\left(x\right)=0$;

При $x>1$, $F\left(x\right)=0,4+0,6=1$;

Таким образом, получаем следующую функцию распределения:

Рисунок 9.

Построим ее график:

Рисунок 10.

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации