Географическая оболочка. Важнейшие качественные особенности географической оболочки, её дифференция на природно-территориальные комплексы

Географи́ческая оболо́чка - в российской географической науке под этим понимается целостная и непрерывная оболочка Земли, где её составные части: верхняя часть литосферы (земная кора), нижняя часть атмосферы (тропосфера, стратосфера), вся гидросфера и биосфера - а также антропосфера (Антропосфера или ноосфера - является сферой взаимодействия человека и природы. Признается не всеми учеными). проникают друг в друга и находятся в тесном взаимодействии. Между ними происходит непрерывный обмен веществом и энергией.

Верхнюю границу географической оболочки проводят по стратопаузе, так как до этого рубежа сказывается тепловое воздействие земной поверхности на атмосферные процессы; границу географической оболочки в литосфере часто совмещают с нижним пределом области гипергенеза (процессы химического и физического преобразования минералов и горных пород в верхних частях земной коры и на её поверхности под воздействием атмосферы, гидросферы и живых организмов при температураx, характерных для поверхности Земли.) (иногда за нижнюю границу географической оболочки принимают подножие стратисферы, среднюю глубину сейсмических или вулканических очагов, подошву земной коры, уровень нулевых годовых амплитуд температуры). Географическая оболочка полностью охватывает гидросферу, опускаясь в океане на 10-11 км ниже уровня моря, верхнюю зону земной коры и нижнюю часть атмосферы (слой мощностью 25-30 км). Наибольшая толщина географической оболочки близка к 40 км. Географическая оболочка является объектом исследования географии и её отраслевых наук.

Несмотря на критику термина географическая оболочка и сложности для его определения активно используется в географии и является одним из основных понятий в географии.

Представление о географической оболочке как о «наружной сфере земли» введено русским метеорологом и географом П. И. Броуновым (1910). Современное понятие разработано и введено в систему географических наук А. А. Григорьевым (1932).

Географическая оболочка Земли образуется под влиянием земных и космических процессов. В ней заключены различные виды свободной энергии. Вещество имеется в любых агрегатных состояниях. Притекающее от Солнца тепло аккумулируется, а все природные процессы в географической оболочке происходят за счет лучистой энергии Солнца и внутренней энергии нашей планеты. В данной оболочке развивается человеческое общество, черпающее ресурсы для своей жизнедеятельности из географической оболочки и воздействующее на нее как положительно, так и отрицательно.

Элементы, свойства

Географическая оболочка имеет ряд важных свойств. Целостность ее обеспечивается, благодаря постоянному обмену веществ и энергии между ее составляющими. А взаимодействие всех компонентов связывает их в одну материальную систему, в которой изменение любого элемента провоцирует изменение и остальных звеньев.

В географической оболочке непрерывно осуществляется круговорот веществ. При этом одни и те же явления и процессы многократно повторяются. Все эти процессы отличаются по сложности и структруре. Некоторые являются механическими явлениями, например, морские течения, ветра, другие сопровождаются переходом веществ из одного агрегатного состояния в другое, к примеру, круговорот воды в природе, может происходить биологическая трансформация веществ, как при биологическом круговороте.

Следует отметить повторяемость различных процессов в географической оболочке во времени, то есть определенную ритмику. В ее основе лежат астрономические и геологические причины. Различают суточную ритмику (день-ночь) месячный и недельный ритмы обусловлены обращением Луны вокруг Земли, годовую (времена года), внутривековую (циклы в 25-50 лет), сверхвековую, геологическую (каледонский, альпийский, герцинский циклы длительностью по 200-230 млн лет). чередование хороших и плохих лет – с солнечной активностью.

С солнечной активностью связывают три вида ритмов: 11-летний ритм, 22-23-летний ритм, 80-90-летний ритм. Обращение Земли вместе со всей Солнечной системой вокруг центра Галактики за 220–250 млн лет определяет геологическую ритмику, то есть смену геологических эпох.

Географическую оболочку можно рассматривать как целостную непрерывно развивающуюся систему под действием экзогенных и эндогенных факторов. Вследствие этого постоянного развития происходит территориальная дифференциация поверхности суши, морского и океанического дна (геокомплексы, ландшафты), выражена полярная асимметрия, проявляющаяся существенными отличиями природы географической оболочки в южном и северном полушариях.

Географическая оболочка - самый крупный природный комплекс

Географическая оболочка - непрерывная и целостная оболочка Земли, включающая в себя в вертикальном разрезе верхнюю часть земной коры (литосферы), нижнюю атмосферу, всю гидросферу и всю биосферу нашей планеты. Что же объединяет, на первый взгляд, разнородные компоненты природной среды в единую материальную систему? Именно в пределах географической оболочки происходит непрерывный обмен веществом и энергией, сложное взаимодействие между указанными компонентными оболочками Земли.

Границы географической оболочки до сих пор четко не определены. За верхнюю ее границу ученые принимают обычно озоновый экран в атмосфере, за пределы которого не выходит жизнь на нашей планете. Нижняя граница чаще всего проводится в литосфере на глубинах не более 1000 м. Это верхняя часть земной коры, которая образована под сильным совместным воздействием атмосферы, гидросферы и живых организмов. Вся толща вод Мирового океана обитаема, поэтому если говорить о нижней границе географической оболочки в океане, то ее следует проводить по океаническому дну. В целом географическая оболочка нашей планеты имеет общую мощность около 30 км.

Как видим, географическая оболочка по объему и территориально совпадает с распространением на Земле живых организмов. Однако единой точки зрения относительно соотношения биосферы и географической оболочки до сих пор нет. Одни ученые считают, что понятия «географическая оболочка» и «биосфера» очень близки, даже тождественны, и указанные термины суть синонимы. Другие же исследователи рассматривают биосферу только как определенную стадию развития географической оболочки. В этом случае в истории развития географической оболочки выделяют три этапа: добиогенный, биогенный и антропогенный (современный). Биосфера, согласно этой точке зрения, соответствует биогенному этапу развития нашей планеты. По мнению третьих, термины «географическая оболочка» и «биосфера» не тождественны, так как отражают разную качественную суть. В понятии «биосфера» основное внимание акцентируется на активной и определяющей роли живого вещества в развитии географической оболочки.

Какой точке зрения отдать предпочтение? Следует иметь в виду, что для географической оболочки характерен ряд специфических особенностей. Она отличается, прежде всего, большим разнообразием вещественного состава и видов энергии, характерных для всех компонентных оболочек - литосферы, атмосферы, гидросферы и биосферы. Через общие (глобальные) круговороты вещества и энергии они объединены в целостную материальную систему. Познать закономерности развития этой единой системы - одна из важнейших задач современной географической науки.

Так, целостность географической оболочки - важнейшая закономерность, на знании которой основывается теория и практика современного рационального природопользования. Учет этой закономерности позволяет предвидеть возможные изменения в природе Земли (изменение одного из компонентов географической оболочки обязательно вызовет изменение других); дать географический прогноз возможных результатов воздействия человека на природу; осуществить географическую экспертизу различных проектов, связанных с хозяйственным использованием тех или иных территорий.

Географической оболочке присуща и другая характерная закономерность - ритмичность развития, т.е. повторяемость во времени тех или иных явлений. В природе Земли выявлены ритмы разной продолжительности - суточный и годовой, внутривековые и сверхвековые ритмы. Суточная ритмика, как известно, обусловлена вращением Земли вокруг своей оси. Суточный ритм проявляется в изменениях температуры, давления и влажности воздуха, облачности, силы ветра; в явлениях приливов и отливов в морях и океанах, циркуляции бризов, процессах фотосинтеза у растений, суточных биоритмах животных и человека.

Годовая ритмика - результат движения Земли по орбите вокруг Солнца. Это смена времен года, изменения в интенсивности почвообразования и разрушения горных пород, сезонные особенности в развитии растительности и хозяйственной деятельности человека. Интересно, что разные ландшафты планеты обладают различной суточной и годовой ритмикой. Так, годовая ритмика лучше всего выражена в умеренных широтах и очень слабо - в экваториальном поясе.

Большой практический интерес представляет изучение и более продолжительных ритмов: 11-12 лет , 22-23 года, 80-90 лет , 1850 лет и более длительных но, к сожалению, они пока еще менее изучены, чем суточные и годовые ритмы.

Эффект Комптона и фотоэффект подтверждает корпускулярную природу света. Свет ведет себя как поток частиц – фотонов. Тогда как же частица может обнаруживать свойства, присущие классическим волнам? Ведь частица может пройти либо через одну, либо через другую щель. Однако известна интерференция света от двух щелей (опыт Юнга). Таким образом, мы пришли к парадоксу – свет обладает одновременно и свойствами корпускул, и свойствами волн. Поэтому говорят, что свету свойственен корпускулярно-волновой дуализм.

Противопоставление квантовых и волновых свойств света друг другу является ошибочным. Свойства непрерывности электромагнитного поля световой волны не исключают свойств дискретности, характерных для световых квантов – фотонов. Свет одновременно обладает свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов. Он представляет собой диалектическое единство этих свойств. С уменьшением длины волны все более отчетливо проявляются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Волновые же свойства у коротковолнового излучения проявляются весьма слабо (например, дифракция у рентгеновских лучей). У длинноволнового же излучения квантовые свойства проявляются слабо и основную роль играют волновые свойства.

Взаимосвязь корпускулярно-волновых свойств света объясняется статистическим подходом к исследованию распространения света. Свет – это поток дискретных частиц – фотонов, в которых локализованы энергия, импульс и масса излучения. Взаимодействие фотонов с веществом при переходе через какую-нибудь оптическую систему приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины. При этом квадрат амплитуды световой волны в какой-либо точке пространства является мерой вероятности попадания фотонов в эту точку.

Таким образом, корпускулярные свойства света связаны с тем, что энергия, масса и импульс излучения локализованы в дискретных фотонах, а волновые – со статистическими закономерностями распределения фотонов в пространстве.

ЛЕКЦИЯ 4. ФИЗИЧЕСКИЕ СВОЙСТВА ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Общие особенности географической оболочки. Географическая оболочка - это материальная система, возникшая на земной поверхности в результате взаимодействия и взаимопроникновения насыщенных организмами литосферы, атмосферы и гидросферы. Природные тела географической оболочки (горные породы, вода, воздух, растительность, живое вещество) имеют различное агрегатное состояние (твердое, жидкое, газообразное) и разные уровни организации вещества (неживое, живое и биокосное - результат взаимодействия живой и неживой субстанций).

Географическая оболочка образована двумя принципиально разными типами материи: атомарно-молекулярным «неживым» веществом и атомарно-организменным «живым» веществом. Первое может участвовать только в физико-химических процессах, в результате которых могут появляться новые вещества, но из тех же химических элементов. Второе обладает способностью воспроизводить себе подобных, но различного состава и облика. Взаимодействия первых требуют внешних энергетических затрат, тогда как вторые обладают собственной энергетикой и могут ее отдать при различных взаимодействиях. Оба типа вещества возникли одновременно и функционируют с момента начала формирования земных сфер. Между частями географической оболочки наблюдается постоянный обмен веществом и энергией, проявляющийся в форме атмосферной и океанической циркуляции, движения поверхностных и подземных вод, ледников, перемещения организмов и живого вещества и др. Благодаря движению вещества и энергии все части географической оболочки оказываются взаимосвязанными и образуют целостную систему.

Разнообразный состав и состояния вещества, формы энергии и взаимодействия природных тел в географической оболочке в ходе длительной эволюции привели к ее сложной пространственной дифференциации. Возникли разнородные части географической оболочки - природно-территориальные и аквальные комплексы, или ландшафты различного ранга: от географических стран и зон до урочищ и фаций. Таким образом, будучи единым целым, географическая оболочка в то же время состоит из относительно самостоятельных, но всегда взаимосвязанных и взаимообусловленных частей. Географическая оболочка является колыбелью жизни, которая в разных формах и проявлениях сопровождает ее с начальных этапов возникновения. Живые организмы всегда оказывали влияние на формирование компонентов географической оболочки. С течением времени при совершенствовании форм жизни, ее распространенности и обильности роль живого вещества возрастала и все более изменяла и совершенствовала облик географической оболочки.

Большинство исследователей вслед за С. В. Калесником называет взаимосвязанное и взаимообусловленное вещественное тело, повсеместно обрамляющее планету Земля, географической оболочкой. Существуют и другие названия - наружная земная оболочка (П. И. Броунов), эпигеосфера (А. Г. Исаченко), эпигенема (Р. И. Аболин), физико-географическая оболочка (А. А. Григорьев), биогеносфера (И. М. Забелин), ландшафтная сфера (Ю. К. Ефремов, Ф. Н. Мильков), но они не получили широкого применения.

Составные части географической оболочки. Географическая оболочка, или глобальная геосфера, состоит из неразрывного комплекса частных геосфер, занятых преимущественно одним компонентом определенного состояния и совместно функционирующих в присутствии биоты. Литосфера, атмосфера и гидросфера образуют практически непрерывные оболочки. Биосфера как совокупность живых организмов в определенной среде обитания не занимает самостоятельного пространства, а осваивает вышеназванные сферы полностью (гидросферу) или частично (атмосферу и литосферу). В землеведении понятие «географическая оболочка» включает в себя все живые организмы (каждая частная сфера имеет свою биоту, которая является ее неразрывным компонентом), поэтому самостоятельное выделение биосферы вряд ли необходимо. В биологии, напротив, выделение биосферы правомерно. Специфическое положение занимают криосфера (сфера холода) и педосфера (почвенный покров).

Для географической оболочки характерно выделение зонально-провинциальных обособлений, которые называют ландшафтами, или геосистемами. Эти комплексы возникают при определенном взаимодействии и интеграции геокомпонентов. Простейшие геосистемы формируются при взаимодействии вещества косного уровня организации. Например, ледники вместе с вмещающим их ложем и прилегающими слоями воздуха, речной бассейн, как система водных потоков вместе с частью земной поверхности и грунтовыми водами и др. Более сложные взаимоотношения существуют в таких геосистемах, как природные территориальные, или ландшафтные комплексы. Они соответствуют блокам географической оболочки, включающим участок земной коры с почвой, биоценоз и часть тропосферы определенной мощности. В океанах выделяют Подводные ландшафты и аквальные комплексы.

Вещество географической оболочки. Каждая из геосфер обладает различными, только ей присущими свойствами и отличается особенностями строения. Гравитационная дифференциация вещества Земли привела к сосредоточению значительной части наиболее тяжелых элементов в ядре, тогда как в земной коре доминируют кислород (около 50 %) и кремний (26 %). Распределение основных химических элементов по геосферам дано в табл. 4.1.

Химические элементы в географической оболочке находятся в свободном состоянии (в воздухе), в виде ионов (в воде) и сложных соединений (живые организмы, минералы и др.).

Наиболее распространенными веществами в географической оболочке являются горные породы и минералы, природные воды, лед, воздух, живое вещество, почва и кора выветривания.

Границы географической оболочки. Большинство ученых считает, что верхняя граница географической оболочки соответствует уровню наибольшей концентрации озонового слоя, расположенного на высоте 25-28 км. Другие исследователи, отождествляющие географическую оболочку с ландшафтной, проводят ее внешнюю границу по верхней границе тропосферы, учитывая, что тропосфера активно взаимодействует с земной поверхностью.

Таблица 4.1. Состояние и состав оболочек Земли (по В.А.Вронскому и Г.В. Войткевичу)

Оболочка Химический состав Физическое состояние
Атмосфера N 2 , О 2 , СО 2 , (Н 2 О), инертные газы Газ
Гидросфера Соленые и пресные воды, снег и лед (растворенные Na, Mg, Са, Cl, SO 4 , НСО 3) Жидкое, частично твердое
Живое вещество Углеводы, жиры, белки, нуклеиновые кислоты, скелетный материал (Н 2 О, N, Н, С, О) Твердое, жидкое частично коллоидальное
Литосфера Магматические, осадочные и метаморфические породы (О, Si, Al, Fe, Са, Mg, Na, К) Твердое, частично расплавленное
Мантия Минералы оливин-пироксенового состава и их эквиваленты высоких давлений (О, Si, Mg, Fe) Твердое
Ядро Железо-никелевый сплав (Fe, FeS, Ni) Верхняя часть жидкая, нижняя, вероятно, твердая

Нижнюю границу часто проводят по разделу Мохоровичича, т.е. по подошве земной коры. Некоторые исследователи считают, что в географическую оболочку следует включать лишь часть земной коры, непосредственно взаимодействующую с другими компонентами - водой, воздухом, живыми организмами. Зона активного преобразования минерального вещества в термодинамической обстановке земной поверхности имеет мощность до нескольких сотен метров на суше и десятки метров под океаном. Причина отсутствия единой точки зрения заключается в том, что в географической оболочке отсутствуют силы, которые формируют четко выраженные границы, подобные, например, граням кристаллов.

Считается, что оптимальными границами географической оболочки являются верхняя граница озонового слоя и подошва земной коры, в пределах которых находятся основная часть атмосферы, вся гидросфера и верхний слой литосферы с живущими или жившими в них организмами и следами человеческой деятельности.

Землеведение базируется на общих физических законах, которые действуют в окружающем мире. Среди них законы: всемирного тяготения И.Ньютона, сохранения массы и энергии, Стефана-Больцмана, Архимеда, Гука, Ома и др.

Основополагающим является понятие «система» - совокупность элементов, находящихся в определенном отношении. Все то, с чем данная система взаимодействует, называют средой. Географические системы взаимодействуют между собой территориально и функционально. Каждая система состоит из конечного числа элементов. С некоторой долей условности системы географической оболочки (геосистемы) и ее внешнего окружения можно подразделить на механические, термодинамические, биокосные, биологические, этнические и социальные.

Механические системы характеризуются силовым взаимодействием образующих их тел, имеющих массу. К ним относятся космические тела, воздушные и морские течения и др. Механическую систему рассматривают как систему равновесия сил. В случае его отсутствия система направленно изменяется и вскоре разрушается.

Термодинамические системы связаны с движением вещества, обусловленным преобразованием или переносом энергии. В отличие от изолированных систем, исследуемых классической термодинамикой, геосистемы относятся к числу открытых, т. е. обменивающихся веществом и энергией с внешней средой. Это чрезвычайно важное обстоятельство, так как открытые системы способны, накапливая превращаемую энергию, поддерживать и совершенствовать свою структуру. Совокупность таких свойств называется самоорганизацией. Благодаря самоорганизации мир географических систем усложняется во времени, совершенствуется (в большей степени способен противостоять внешним воздействиям) или направленно эволюционирует.

Рис 4.1. Состояние системы: а - устойчивое; б - метаустойчивое; в - неустойчивое

Термодинамическими системами являются различные термические циркуляции вещества, если с ними связаны переходы или потоки энергии. Например, круговорот воды в природе. При изучении термодинамических систем широко используется метод балансов (радиационный и тепловой баланс). В отдельных случаях можно ограничиться рассмотрением термодинамической системы как изолированной, т.е. пренебречь энергообменом системы с окружающей средой (адиабатический процесс в атмосфере).

Биокосными называют системы, в которых неразрывно связаны и взаимодействуют живое и неживое вещества. Примером биокосной системы является почва, представляющая собой единство минерального вещества (порода, вода, воздух), живых организмов и мертвого биоорганического вещества (гумус и др.). Если изъять из почвы один из этих компонентов, то она утратит свои характерные свойства (прежде всего плодородие), т.е. станет другой системой.

Система имеет связи, которые подразделяют на прямые (причинно-следственные, вещественно-энергетические) и обратные (информационно-регулирующие). Систему с обратными связями называют саморегулируемой. Обратные связи бывают отрицательными и положительными. Отрицательная связь уменьшает интенсивность процесса в системе при увеличении ее «выхода». Она характерна для нормально функционирующих систем и направлена на поддержание их динамического равновесия, устойчивости, неизменности. Положительная связь усиливает процесс по мере увеличения «выхода» системы, т. е. приводит к лавинообразному нарастанию процесса, в результате чего система переходит в новое состояние или разрушается. Чаще всего такой ход изменений провоцируется внешними причинами, но механизм саморазвития заложен в природе системы.

Состояние системы описывается параметрами, среди которых выделяют интенсивные и экстенсивные. Интенсивные параметры (температура, абсолютная и относительная влажность, биопродуктивность) не зависят от размеров системы, экстенсивные (запасы тепла, влагосодержание в воздушной массе, запасы органического вещества и др.) определяются величиной системы (температура есть и в Арктике, и на экваторе, но в Арктике она ниже, а на экваторе выше). Следовательно, первые не меняются при делении системы на части, а вторые убывают.

Если интенсивные параметры системы однородны, т.е. не различаются в ее частях, то такая система находится в состоянии устойчивого равновесия по данным параметрам. Устойчивым называют равновесие, которое самопроизвольно восстанавливается, если систему из него вывести. Систему в устойчивом состоянии можно уподобить шарику, находящемуся в ямке (рис. 4.1, а). Метаустойчивым называют состояние, являющееся одним из вариантов устойчивого (рис. 4.1, б): шар мог бы занять любое из трех понижений (1 , 2, 3), но из них абсолютно устойчиво только положение 2. Неустойчивым называют состояние, когда малый импульс воздействия выводит систему из равновесия, в которое она не может возвратиться (рис. 4.1, в). Неустойчивость характерна для развивающихся систем. Она увеличивает разнообразие природы (создаются новые системы), но может иметь и отрицательное экологическое значение. Системы в неустойчивом состоянии подвержены флуктуациям - хаотическим колебаниям параметров, эффект которых непредсказуем.

В большинстве случаев системы географической оболочки являются открытыми. Открытые системы не стремятся к минимуму потенциальной энергии и максимуму энтропии (мера рассеяния энергии). Географические системы способны совершенствоваться, уменьшая (или концентрируя) энтропию за счет внешней среды. Этот процесс можно представить как образование порядка из хаоса. Он наблюдается в географической оболочке эволюционно.

В географической оболочке существуют системы, которые имеют два и более устойчивых состояний, называемых триггерными (переключающими). Например, ледниковое и безледное состояние земной поверхности, функционирование гейзера (покой - выброс). Понятие триггерности важно для оценки возможных экологических последствий: энергетически легче удержать явление в определенном состоянии, чем вернуть его в прежнее, если начался переходный процесс.

Механические взаимодействия в планетарных физико-географических процессах, имеющих материальную основу, подчинены закону всемирного тяготения, согласно которому, две любые материальные частицы с массами М 1 и М 2 притягиваются по отношению друг к другу с силой Р, пропорциональной произведению масс и обратно пропорциональной квадрату расстояния R между ними:

где G - коэффициент пропорциональности (гравитационная постоянная), равный 6,6725×10 -11 Н×м 2 /кг 2 . Согласно этому закону, сила тяготения зависит только от положения частиц в данный момент времени, т.е. гравитационное взаимодействие распространяется мгновенно. Отсюда - выражение для силы тяжести:

где g - ускорение свободно падающей точки, равное 9,7805 х т- масса материальной точки; φ - географическая широта; h - высота точки над уровнем моря.

В мире макротел, которыми являются небесные тела, закон всемирного тяготения играет основополагающую роль, определяя их взаимодействие и эволюцию. На Земле проявлениями этого закона являются:

Гравитационное поле Земли (поле силы тяжести);

Гравитационная дифференциация земного вещества, приводящая к образованию геосфер, изостатическому уравновешиванию литосферы, тепловой конвекции в ядре и мантии, океане и атмосфере;

Движения земных масс и их перемещения внутри планеты и на ее поверхности;

Образование приливов.

Гравитационное поле Земли представляет собой поле силы тяжести - равнодействующей силы тяготения и центробежной силы вращения Земли (рис. 4.2). Так как сила тяготения зависит от радиуса Земли, который наименьший на полюсах, то она наибольшая на полюсах. Центробежная сила, зависящая (при одинаковой скорости вращения) от радиуса орбиты, наибольшая на экваторе. Результирующая этих сил возрастает от экватора к полюсам соответственно от 978 до 983 галов. Сила тяжести убывает от земной поверхности вверх и несколько возрастает в глубь Земли в пределах литосферы.

Гравитационное поле - потенциальное. Точки с одинаковым потенциалом силы тяжести образуют изопотенциальные (или эквипотенциальные) поверхности. На каждой такой поверхности невозможно самопроизвольное перемещение массы, так как горизонтальная составляющая силы тяжести равна нулю. Наиболее важной изопотенциальной поверхностью Земли является поверхность геоида. Сечения изопотенциальными поверхностями рельефа образует горизонтали (изогипсы суши или изобаты морского дна).

Рис. 4.2. Сила тяжести (Р о) - равнодействующая сил тяготения (P N) и центробежной (Р δ)

Движения тел, имеющих массу, происходят в поле силы тяжести в соответствии с направлением градиента этого поля, т.е. по нормали к изопотенциальным поверхностям. При наличии препятствий (например, рельеф) движение происходит таким образом, чтобы потенциальная энергия уменьшалась. Например, по закону сообщающихся сосудов уровень воды в соединенных резервуарах соответствует одной потенциальной поверхности.

Значения поля силы тяжести Земли отображаются изогонами (линиями равных значений силы тяжести).

Гравитационная дифференциация. По существующим представлениям, сила тяготения была одной из главных при образовании Земли из протопланетного облака. В соответствии с разными гипотезами, Земля возникла как гетерогенное тело (ядро Земли образовалось на более ранней стадии, мантия - на более поздней) или как гомогенная масса. В последнем случае считается, что главным в истории планеты с геофизической точки зрения является процесс гравитационной дифференциации вещества - расслоение в соответствии с плотностью вещества в поле силы тяжести. В результате такого расслоения возникли геосферы, каждая из которых сложена веществом одного агрегатного состояния и сходной плотности. Подсчеты показывают, что количества тепла, которое выделилось в процессе гравитационного расслоения Земли на ядро и мантию, хватило бы для того, чтобы расплавить изначально твердое вещество нашей планеты.

С гравитационной дифференциацией связано множество процессов, в том числе вертикальные тектонические движения блоков литосферы. В атмосфере гравитационная дифференциация приводит к неустойчивости воздушного столба вследствие различных температур и влажности. В тропосфере воздух нагревается от земной поверхности и испытывает импульс движения, направленный вверх («всплывает»). Гравитационная неустойчивость атмосферы обычна, поэтому в метеорологии уменьшение температуры от земной поверхности вверх считают нормой, тогда как увеличение температуры называется инверсией. В гидросфере гравитационная дифференциация зависит как от температуры, так и от солености водных масс, что также приводит к их перемещению и размещению в соответствии с плотностью (процесс подъема вод называется апвеллинг, опускания - даунвеллинг).

Изостазия. Процессы плотностной дифференциации проявляют себя также в виде изостатического уравновешивания литосферы. Это хорошо иллюстрируют модели изостатического уравновешивания тел, плавающих на водной поверхности (рис. 4.3). На рис. 4.3, б показаны кубики различной плотности при их одинаковом размере, вследствие чего они погружаются в воду пропорционально отношению собственной плотности воды. На рис. 4.3, а показаны кубики одинаковой плотности, но различных размеров, поэтому каждый кубик погружен в воду на величину, равную отношению масс (как в предыдущем случае), умноженному на сечение кубика. Стрелками показаны пары сил тяжести и Архимедовой. Каждый кубик находится в состоянии изостатического равновесия в соответствии с плотностью вещества и толщиной (мощностью) тела.

Обычно понятие изостатического равновесия употребляется по отношению к литосфере, но эффект проявляется в любых средах. Так, из принципиальной схемы (рис. 4.4) изостатического уравновешивания блоков литосферы видно, что материковая кора всплывает вместе с частью верхней мантии, поскольку сложена веществом менее плотным, чем океаническая, и имеет большую мощность. Океаническая кора погружается относительно материковой по тем же причинам, ибо плотность ее выше, а мощность меньше. Благодаря изостазии поддерживается закономерное соотношение высот суши и глубин океана, которое отображает гипсографическая кривая.

Рис. 4.3. Модели изостазии (по Ф. Стейси): а - уравновешивание на субстрате блоков по мощности литосферы; б - уравновешивание на субстрате блоков по плотности вещества (цифры даны в единицах условной плотности)

Рис. 4.4. Изостатическое равновесие литосферы

Изостатическое уравновешивание литосферы является важным системообразующим свойством географической оболочки. Оно определяет конфигурацию континентов и океанов, распределение высот и глубин, а через них - поступление и перераспределение тепла, циркуляцию водных и воздушных масс и другие закономерности пространственной дифференциации географической оболочки.

Движения земных масс. Взаимодействия гравитационных и иных сил внутри планеты и влияние космического окружения приводят к движению земных масс, старающихся занять наиболее устойчивое положение в пространстве. Непосредственным выражением этих смещений являются вулканические процессы - выбросы в географическую оболочку глубинных масс вещества, сейсмические явления - резкие смещения внутриземных масс, сопровождаемые обычно подземными толчками и разрывами сплошности земной коры, тектонические движения - перемещения земных масс внутри планеты или проявляющихся на земной поверхности (неотектонические). Все они активно влияют на функционирование географической оболочки. Основная причина их проявления заключается в необходимости уравновешивания результатов взаимодействий внутри Земли и на ее поверхности. Движения земных масс являются важной характеристикой планеты, так как свидетельствуют об активности ее недр и способности к развитию и совершенствованию.

Приливы. Океанские приливы зависят главным образом от взаимодействия Земли, Луны и Солнца. Ведущую роль при этом играет близкорасположенная Луна, притяжение которой в 2,17 раза превосходит солнечное. Весь приливоотливной цикл по продолжительности соответствует лунным суткам (24 ч 51 мин), которые не совпадают с солнечными, за счет чего образуются приливные неравенства. Однако в действительности наблюдаются суточные, полусуточные и смешанные приливы.

Луна обращается вокруг Земли по эллиптической орбите со средним радиусом 384 тыс. км. Система Земля-Луна имеет общий центр масс, расположенный в теле Земли на расстоянии 2/3 от ее центра, так как массы взаимодействующих сил сильно различаются (земная в 81 раз больше, чем лунная). Оба небесных тела перемещаются таким образом, что любая точка одного из них описывает одинаковую орбиту. В каждой такой точке возникает одинаковая центробежная сила, не зависящая от широты места.

Кроме центробежной на каждую точку Земли действует направленная к Луне сила тяготения, которая зависит от расстояния до возмущающей массы (рис. 4.5). Если расстояние от центра массы Луны до центра массы Земли составляет 60 земных радиусов (R), то до ближайшей к Луне точке Z (зенит) оно равно только 59R, а до самой дальней точки N (надир) - 61R. По закону всемирного тяготения, величина силы тяготения обратно пропорциональна квадрату расстояния между центрами масс. Следовательно, в точке Z сила тяготения больше, чем в точке О 3 , а в точке N - меньше, чем в любой из точек тела Земли. Таким образом, в центре массы Земли имеет место равенство сил тяготения и центробежной, а в точках Z и N равенства нет: в точке Z сила тяготения больше центробежной, а в точке N - больше центробежная сила. Это приводит к образованию приливных деформаций - выпуклостей или стоячих волн.

Расчеты показывают, что в центре массы Земли абсолютное значение силы тяготения, обусловленное влиянием Луны, составляет 3,38 мг на 1 кг массы, в точке Z сила тяготения равна уже 3,49 мг/кг, а в точке N - только 3,27 мг/кг. Суммируя эти значения в каждой точке земной поверхности с векторными значениями центробежной силы, получим равнодействующую, которая направлена в точке Z к Луне, а в точке N от Луны. Эту силу называют приливообразующей. Ее величина в обоих случаях составляет 0,11 мг/кг массы, но противоположна по знаку. В других точках, не лежащих на оси системы Земля - Луна, силы окажутся несоосными и образуют параллелограммы, в которых равнодействующая направлена по диагонали параллелограмма.

Рис. 4.5. Образование приливообразующей силы под воздействием Луны в различных точках поверхности Земли

Рис 4.6. Приливы, образующиеся при взаимодействии Земли с Луной (Л) и Солнцем (С): а - сизигийный; б - квадратурный

Вследствие вращения Земли приливные выступы образуются в каждый следующий момент уже в новых местах земной поверхности, поэтому за промежуток времени между двумя последовательными верхними или нижними кульминациями Луны приливные выступы обойдут вокруг Земного шара и за это время в каждом месте произойдут два прилива и два отлива.

Аналогичное взаимодействие происходит между Землей и Солнцем (а также другими небесными телами), но оно незначительное. Масса Солнца несопоставимо велика по сравнению с массой Луны и расстояние от Земли до Солнца также значительно больше, чем до Луны, поэтому величина солнечного прилива приблизительно в 2,2 раза меньше, чем лунного. Так как взаимное положение Земли, Луны и Солнца постоянно меняется, то изменяются и величины солнечных и лунных приливов. Солнечные приливы изменяют величину лунных приливов. Если приливные волны лунного и солнечного происхождения суммируются, а три светила располагаются по одной прямой, то прилив называется сизигийным, если вычитаются, а Солнце и Луна относительно Земли образуют прямой угол - квадратурным (рис. 4.6). Высота сизигийного прилива в океане приблизительно в 1,5 раза выше лунного, а квадратурного вполовину меньше.

Приливы оказывают воздействие на все оболочки Земли независимо от среды или состояния вещества. Приливная сила одинакова и на суше, и на море. Однако способность сопротивления этой силе (вязкость, упругость) и деформация различных сред неодинаковы. Не только океан, но и поверхность литосферы, а также недра испытывают периодические деформации за счет прохождения приливных волн. На суше нет точки отсчета, каковой в океане является береговая линия, поэтому литосферный прилив незаметен.

Приливоотливные движения имеют для Земли важное географическое следствие. В деформируемом приливом теле Земли (во всех средах - твердой, жидкой, газообразной) происходит внутреннее трение, приводящее к преобразованию энергии суточного вращения Земли в механическую, а затем к диссипации энергии суточного вращения Земли. Суточное вращение Земли по этой причине замедляется на 1/40 000 с в год, т. е. сутки удлиняются на 1 с за 40 000 лет, что в масштабах геологического времени весьма заметно. Замедление суточного вращения Земли уменьшает силу Кориолиса, воздействует на фигуру эллипсоида вращения (чем медленнее осевое вращение, тем меньше полярная сплюснутость Земли и тем ближе ее модель к форме сферы) и на положение геоида. Согласно расчетам, замедление осевого вращения, приводящее к удлинению суток на 0,5 часа, должно высвободить энергию, достаточную для образования Альпийской горной системы.

Приливоотливные явления (колебания уровня моря и приливные течения) как результат распространения приливных волн (глаз наблюдателя фиксирует суммарный прилив, в действительности он состоит приблизительно из 40 гармоник) приводят к периодическому затоплению и осушению береговой зоны на границе континента и океана. Они играют важную роль в формировании специфических природных обстановок (подводных ландшафтов) на довольно обширных низменных побережьях континентов. При выходе к мелководью прилив может существенно нарушать гидрологический режим в эстуариях рек, впадающих в море или океан и даже поворачивать их вверх по течению. Такое явление получило название приливного бора. Природные условия во многих районах Мирового океана в значительной степени определяются приливоотливной изменчивостью уровня и течений, существенно влияющих на гидрологический режим (особенно проливов), структуру вод, интенсивность и характер переноса вод.

Интенсивность приливных процессов тесно связана с конкретными астрономическими условиями, главным образом с изменениями фаз и склонений Луны. Однако приливная волна не строго следует астрономическим факторам. Скорость ее движения зависит от многих географических факторов - глубины моря (чем оно глубже, тем меньше сопротивление трения воды о дно), конфигурации суши и морского бассейна и др. В открытом океане высота прилива небольшая, но по мере приближения к берегу приливная волна увеличивается.

Приливообразующая сила представляет пример образования сложных причинно-следственных связей в географической оболочке и самоусиления незначительных исходных изменений. Способность системы самопроизвольно усиливать внешнее воздействие свойственна неравновесным системам, к которым относится географическая оболочка, и называется синергизмом.

Механические движения, связанные с вращением Земли. Основу этих движений составляет одна из сил инерции - сила Кориолиса, обусловленная вращением Земли вокруг своей оси. Она равна произведению массы точки т на ее поворотное ускорение а к и направлена противоположно этому ускорению:

где F K - сила Кориолиса; т - масса движущегося тела; v отн - относительная скорость движения точки; ω - угловая скорость вращения Земли; φ - географическая широта.

На Земле сила Кориолиса проявляется в том, что свободно падающие тела отклоняются по вертикали к востоку, а тела, движущиеся вдоль земной поверхности, отклоняются от направления их движения в Северном полушарии вправо, а в Южном - влево. Вследствие медленного вращения Земли такие отклонения весьма малы и заметно сказываются или при очень больших скоростях движения, или когда движение длится очень долго (например, подмыв соответствующих берегов рек - правые берега рек Северного полушария крутые, левые - пологие, а в Южном - наоборот).

Действия силы Кориолиса распространяются на многие явления в географической оболочке. В атмосфере под влиянием отклоняющей силы вращения Земли ветры умеренных широт обоих полушарий принимают преимущественно западное направление, а в тропических широтах - восточное. В океане сила Кориолиса приводит к тому, что частицы воды движутся петлеобразно, преимущественно перпендикулярно начальному импульсу движения (наклону уровня воды). Однако морские течения не повторяют направления разгоняющих их ветров. Под действием силы Кориолиса они смещаются от направления господствующих ветров под углом 30° вправо или влево в зависимости от полушария, что показал Ф.Нансен во время ледового дрейфа на корабле «Фрам».

Согласно теории дрейфа В. У. Экмана, в океане происходит изменение направления движения вод с глубиной по спирали: чем глубже, тем больше уклоняется течение вправо (в Северном полушарии) по отношению к направлению вызвавшего его ветра (рис. 4.7). Однако в действительности поток с глубиной отклоняется силой Кориолиса от направления вызвавшего его ветра на 45° в соответствующую для каждого полушария сторону и даже поворачивает в противоположное ветру направление. Вследствие такого переноса воды пассатные ветры становятся причиной смещения потока, направленного к северу и югу от экватора. Для компенсации оттока здесь происходит подъем холодных глубинных вод. Вот почему температура поверхностной воды на экваторе оказывается на 2-3°С ниже, чем в тропиках.

Рис. 4.7. Перспективное представление дрейфового течения на различных глубинах в Северном полушарии (спираль Экмана)

Магнитное поле. Присутствие магнитного поля Земли наблюдал каждый, кто брал в руки компас и видел, как один конец стрелки, указывает на север, другой - на юг.

Различают два вида магнитного поля Земли: постоянное (главное) и переменное. Природа и происхождение их различны, но между ними существует взаимосвязь. Формированию постоянного магнитного поля способствуют внутренние источники - электрические токи, возникающие на поверхности уплотненного ядра Земли из-за различия температур в его частях, что предположительно связано с динамическими процессами в мантии и ядре. Они создают устойчивое магнитное поле, простирающееся на 20- 25 земных радиусов, разное по напряжению в различных точках земной поверхности и подверженное лишь медленным колебаниям. Переменное поле создается внешними источниками, находящимися за пределами планеты - электрическими токами в верхних слоях атмосферы. Пришедшие из глубин Вселенной лучи и частицы вызывают многие известные явления - полярные сияния, магнитные бури, ионизацию воздуха, переход атмосферного кислорода и азота из молекулярного в атомарное состояние и др. Переменное магнитное поле примерно в 100 раз слабее постоянного и характеризуется колебаниями, различными по происхождению и продолжительности действия: регулярными (суточные, сезонные), имеющими, главным образом, солнечную природу, и нерегулярными (магнитные бури).

Магнитное поле Земли имеет дипольную составляющую, в которой есть ось с северным и южным магнитными полюсами, наклоненная под углом 11,5° к оси вращения. Магнитное поле ориентирует стрелку компаса в направлении магнитных силовых линий. Плоскость большого круга, в которой находится магнитная стрелка, называется магнитным меридианом. Магнитные меридианы, как и географические, сходятся в двух точках - магнитных полюсах. Магнитные полюса не совпадают с географическими, и их координаты меняются в пространстве: северный полюс - 75°42" с.ш., 101 о 30" з.д. (1970г.); 77°36" с.ш., 102°48" з.д. (1985 г.), южный полюс - 65°30" ю.ш., 140°18" в.д. и 65° 06" ю.ш., 139° в.д. (1985 г.). Северный магнитный полюс дрейфует со скоростью 5-6 км/год, но к 2002 г. его скорость возросла до 40 км/год.

Магнитное поле Земли характеризуется следующими показателями: магнитным склонением, магнитным наклонением и напряженностью.

Магнитное склонение - угол между истинным направлением на север, т.е. географическим меридианом, и направлением северного конца магнитной стрелки. Его значение изменяется от 0° до ±180°. Линии одинакового магнитного склонения называют изогонами.

Магнитное наклонение - угол между горизонтальной плоскостью и магнитной стрелкой, свободно подвешенной на горизонтальной оси. Его значение изменяется от 0° до (±90)°. Оно бывает положительным в северном геомагнитном полушарии и отрицательным - в южном. Линии одинакового магнитного наклонения называют изоклинами.

Напряженность характеризует силу магнитного поля и ее величина возрастает с широтой.

Изменение характеристик магнитного поля во времени происходит прежде всего за счет его смещения относительно земного шара - западного дрейфа.

В истории Земли отмечены смены полярности магнитного диполя. Полярность, когда северный конец магнитной стрелки направлен к северу, называют прямой (как сейчас), в противоположном случае говорят об обратной намагниченности земного диполя.

Наблюдения за магнитным полем Земли ведут многие обсерватории мира и по их измерениям строятся геомагнитные карты, которые показывают, что в ряде районов земного шара напряженность магнитного поля и магнитные силовые линии из-за неоднородности внутреннего строения Земли и остаточной намагниченности горных пород отклоняются от нормального. Такие отклонения называют магнитными аномалиями. Некоторые аномалии используются в качестве поисковых признаков полезных ископаемых.

Рис. 4.8. Меридиональное сечение магнитосферы, по данным спутниковых измерений (по К. А. Куликову и Н.С. Сидоренкову): 1 - плазменный слой («хвост») магнитосферы; 2 - полярная щель; 3- радиационный пояс; 4- плазмосфера; 5- плазменная мантия; 6 - магнитопауза; 7 - фронт ударной волны; 8 - «солнечный ветер»

Магнитосфера. Солнце и планеты Солнечной системы обладают магнитным полем, которое создает вокруг каждого из небесных тел особую внешнюю оболочку - магнитосферу. Это область околоземного пространства (средний диаметр магнитосферы превышает 90 тыс. км в сечении), физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц (корпускул) космического происхождения.

Земля постоянно подвергается воздействию корпускулярного излучения Солнца - солнечного ветра. Солнечный ветер распространяется от солнечной короны с большой скоростью (400 км/с). Он состоит из протонов и электронов. При взаимодействии солнечного ветра с магнитным полем Земли образуется ударная волна (рис. 4.8), за которой следует переходная область, где магнитное поле солнечной плазмы становится неупорядоченным. Переходная область примыкает к магнитосфере Земли, граница которой - магнитопауза - проходит там, где динамическое давление солнечного ветра уравновешивается давлением магнитного поля Земли.

Внутри ударной волны находятся радиационные пояса, в которых заряженные частицы - электроны и протоны - перемещаются по спиральным траекториям в направлении магнитных силовых линий. Взаимодействуя с верхними слоями атмосферы, эти частицы ионизируют ее и вызывают полярные сияния.

Геомагнитное поле, взаимодействуя с солнечным ветром, и образует магнитосферу. Под ударами солнечного ветра она сжата со стороны Солнца и сильно вытянута в противосолнечном направлении, образуя хвост длиной до 900-1050 земных радиусов.

Магнитосфера не относится к геосферам планеты, но играет важную роль в формировании многих свойств географической оболочки. Она является главным препятствием для проникновения в географическую оболочку губительного для живого вещества корпускулярного излучения Солнца. По мнению С. В. Калесника, геомагнитное поле наряду с атмосферой образует «броневой заслон» планеты - захватывает подлетающие к Земле космические частицы и мешает им ускользнуть обратно в межпланетное пространство или проникнуть в нижние слои атмосферы. Беспрепятственно вторгаться в атмосферу космические частицы могут лишь в районе магнитных полюсов.

Одновременно магнитосфера пропускает к поверхности планеты рентгеновские и ультрафиолетовые лучи, радиоволны и лучистую энергию, которая служит основным источником тепла и энергетической базой происходящих в географической оболочке процессов.

Накоплено много фактов о высокой чувствительности к магнитным полям насекомых, рыб, птиц, моллюсков, черепах, червей и даже водорослей, а также человека. Экспериментально доказана зависимость между различными функциями растений и животных и их ориентацией в магнитном поле. Это явление получило название магнитотропизма.

Палеомагнетизм. Магнитное поле Земли существует с незапамятных времен и отражается в результатах процессов и явлений, происходивших на планете в далеком прошлом. Исследование древних горных пород, содержащих частицы магнетита, гематита или других оксидов железа, показало наличие в них остаточной намагниченности, имеющей направление магнитного поля Земли соответствующей эпохи. Изучение первичной намагниченности горных пород разного возраста позволило получить данные (отчасти дискуссионные) о временных изменениях магнитного поля Земли, а при проведении исследований в разных регионах - его пространственное распределение. Согласно этим данным, магнитное поле характеризуется медленным направленным изменением и неоднократно претерпевало инверсии, когда северный полюс становился южным и наоборот. В кайнозойскую эру средним состоянием земного магнитного поля является поле диполя, ориентированного по оси вращения планеты, а сама современная эпоха считается положительной. Палеомагнитные данные для палеозойской эры согласуются между собой только при дополнительном предположении о миграции магнитного полюса относительно земной поверхности. Пути миграции магнитного полюса, вычисленные для разных континентов, существенно различаются, что объясняется их перемещениями во времени и пространстве.

Планетарный характер земного магнетизма и изменений его элементов в геологическом прошлом обусловливает принципиальную возможность возрастной корреляции событий и образований географической оболочки и строгую изохронность выделяемых единиц. Отмеченные зависимости в настоящее время широко используют при сопоставлении разновозрастных базальтов океанического дна, а также для корреляции молодых континентальных образований, практически лишенных палеонтологического материала. Полосчатое строение (полосы прямой и обратной намагниченности чередуются между собой) этих горных пород обусловлено ориентацией железосодержащих минералов в соответствии с направлением магнитных силовых линий, существующих в момент их образования.

Электрическое поле Земли существует во всех сферах географической оболочки, в том числе и у животных. Основная его характеристика - напряженность - представляет собой силу, приложенную в этом поле к единичному положительному заряду. Распределение электрических зарядов в пространстве изображают силовыми линиями: чем больше густота линий, тем больше напряженность электрического поля.

Явления, связанные с движением электрических зарядов, лежат в основе многих процессов, происходящих во Вселенной и на Земле. Наша планета постоянно подвергается «бомбардировке» заряженными частицами из космического пространства. Некоторые из них возникают за пределами Солнечной системы и в основном представлены протонами (примерно 85%), a-частицами (около 14%) и тяжелыми атомными ядрами. Большинство этих частиц образуется, вероятно, в пределах нашей Галактики, и поэтому их потоки называют галактическими космическими лучами. Кроме них известны солнечные космические лучи, исходящие от Солнца и состоящие в основном также из протонов. Именно они формируют внеземные электрические потоки, заметно увеличивающиеся в периоды сильных возмущений на поверхности Солнца. При подходе к Земле эти частицы попадают в магнитное поле планеты и приобретают очень сложный характер движения, особенно вблизи полюсов. Если кинетическая энергия частицы сравнительно небольшая, то частица отклоняется полем и не достигает поверхности Земли. Частицы с большой энергией могут достигать земной поверхности. В области магнитных полюсов протоны даже с небольшой энергией могут достигать земной поверхности, как бы «навиваясь» на магнитные силовые линии. С движением заряженных частиц в магнитном поле Земли связаны полярные сияния - свечение разреженных слоев воздуха на высоте 90-100 км и молнии - гигантские электрические искровые разряды между облаками.

Земные (теллурические) электрические потоки захватывают обширные участки земной коры и океанской толщи, размеры которых составляют сотни и тысячи квадратных километров. Главной причиной их образования считают изменение интенсивности солнечной радиации, создающее в атмосфере, гидросфере и литосфере переменное электромагнитное поле. Теллурическое поле изменчиво во времени и пространстве: плотность теллурических токов возрастает при магнитных возмущениях и в период магнитных бурь. Теллурические токи в океане по сравнению с токами на суше имеют большую плотность: в земной коре она составляет в среднем 2×10 -10 А/м 2 , в океане - 3×10 -6 A/м 2 . Поле теллурических токов постоянно изменяется в зависимости от геомагнитного поля. В Мировом океане дополнительными источниками электромагнитного поля являются скопления определенных микроорганизмов, создающих биоэлектрический эффект (свечение воды), насыщенные суспензией потоки (особенно в придонном слое и в подводных каньонах), вертикальная конвекция. Соотношение этих факторов различно, но, как правило, они оказывают интегральное действие.

Тепловое поле существует за счет неравномерного нагревания вещества Земли - горных пород, вод и воздуха, в результате чего возникает пространственная неравномерность распределения температуры. Источниками термического поля являются внутренние и внешние процессы.

Внешний источник - солнечная радиация, проникает на глубину лишь в несколько метров. Дальнейшее увеличение температуры с глубиной (в среднем 0,3°С на 100 м) связано с внутренними источниками - распадом радиоактивных элементов, гравитационной дифференциацией вещества, приливным трением, процессами метаморфизма и фазовыми переходами вещества. Большинство исследователей главным источником внутреннего тепла считает гравитационную дифференциацию вещества. Скорость возрастания температур с глубиной зависит от теплопроводности, проницаемости горных пород и генерации тепла источниками. Основная потеря внутреннего тепла Земли (4×10 12 Вт) происходит за счет теплового потока, меньшую роль играют вулканизм, землетрясения, гидротермальные источники. Плотность теплового потока из недр определяет энергетическое состояние поверхности Земли и тектонические особенности региона. Эта величина различна и в среднем составляет (мВт/м 2): для глубоководных океанических впадин - 28-65, в пределах щитов - 29-49, в геосинклинальных областях и срединно-океанических хребтах - 100-300 и более. Среднее значение для Земли равно 64-75 мВт/м 2 , что в несколько десятков тысяч раз меньше потока лучистой энергии Солнца.

Тепловые взаимодействия во многом зависят от вещественного состава тел (воздух, вода, горные породы), их физических свойств (теплоемкость, теплопроводность, температура фазовых превращений), а также плотности вещества.

Современное тепловое поле оказывает несомненное влияние на процессы, происходящие в оболочке, особенно на развитие Живого вещества.

Рис. 4.9. Модели (а, б) географической тепловой машины

Тепловые взаимодействия описываются уравнениями, вытекающими из физических законов. Фундаментальное значение для понимания процесса переноса тепла в географической оболочке имеют законы (начала) термодинамики. Первое начало термодинамики реализует закон сохранения энергии применительно к термодинамической системе и определяет влияние на систему поступления внешней энергии следующим образом: поступившее в систему тепло равно сумме приращений внутренней энергии системы и совершенной системой работой. Второе начало термодинамики объясняет поток тепла от тела с более высокой температурой к телу сболее низкой температурой.

Эти постулаты послужили основой для объяснения различных форм циркуляции вещества (круговоротов) в географической оболочке. В. В. Шулейкин ввел понятие «географическая тепловая машина». Географическая тепловая машина - это термодинамическая система, в которой из-за разности температур ее отдельных частей происходит перенос тепла и совершается работа. Часть системы с более высокой температурой называется нагревателем, другая, где температура ниже, - холодильником (рис. 4.9, а). Нагреватель получает тепло от внешней среды и, согласно второму закону термодинамики, должен служить холодильником для другой системы, иначе он не может черпать тепло из внешней среды. В то же время холодильник отдает тепло внешней среде, иначе он не может принимать энергию от нагревателя (рис. 4.9, б). Таким образом, холодильник данной тепловой машины служит нагревателем другой системе, сопряженной с ним термодинамически. В структуре географических тепловых машин пространственно разобщенные нагреватели и холодильники объединены многочисленными потоками энергии.

Геохимические процессы играют в географической оболочке важную роль, поскольку они затрагивают саму сущность окружающей среды с точки зрения состава образующих ее элементов и взаимодействия друг с другом, включая обмен веществом.

Для оценки среднего химического (элементного) состава Земли используют результаты измерения плотности Земли, скорости и направления сейсмических и электромагнитных волн, состав метеоритов. Средний состав Земли как небесного тела впервые был намечен геохимиком П.Н.Чирвинским в 1919 г. Современные данные о среднем содержании химических элементов Земли (по В.А. Руднику и Э.В. Соботовичу, 1984) приведены ниже:

Кларк. В начале XX в. американский ученый Ф.У. Кларк стал изучать количественную распространенность химических элементов в земной коре, атмосфере и гидросфере. Для обозначения среднего содержания химического элемента в земной коре (атмосфере, гидросфере, Земле в целом, космических объектах) А.Е. Ферсман в 1923 г. предложил термин «кларк».

Данные табл. 4.2 показывают, что земная кора почти наполовину (47%) состоит из кислорода и ее можно назвать «кислородной сферой». Вместе с кремнием эти элементы составляют приблизительно 80% массы земной коры, а с учетом кларков алюминия, железа, кальция, натрия, калия, магния и титана сумма увеличивается до 99,48%. Доля всех остальных элементов составляет около 0,5%.

Таблица 4.2. Химический состав земной коры

Кларк концентрации. Отношение содержания элемента в данной системе к его кларку в земной коре называется кларком концентрации. Этот термин введен В.И. Вернадским в 1937 г. и является важной геохимической характеристикой. Если кларк меньше единицы, то пользуются показателем кларк рассеяния - величиной, обратной кларку концентрации.

Кларки концентрации и рассеяния одного и того же элемента в различных ландшафтно-географических обстановках могут колебаться в очень больших пределах, что зависит от первичных источников элемента, его миграционной способности, формы нахождения элемента в природных системах и свойств среды рассеивать или концентрировать элемент. На рис. 4.10 показан кларк концентрации бария в земной коре. Наибольшее значение (1,27) характерно для кислых пород, наименьшее (n×10 -5) - для водной среды.

Миграция и дифференциация вещества. Вещество Земли находится в постоянном движении. На миграцию (движение, перемещение, перераспределение) и дифференциацию элементов влияют две группы факторов: внутренние - свойства химических элементов, определяемые строением атомов, их способностью образовывать соединения, осаждаться из растворов и расплавов, и внешние, характеризующие обстановку миграции - температура, давление, кислотно-щелочные и окислительно-восстановительные условия (рН и Eh).

Рис. 4.10. Кларк концентрации бария (по А. И. Перельману): 1 - изверженные породы, кислые; 2 - то же, основные; 3 - то же, ультраосновные; 4 - известняки; 5 - сланцы углеродисто-кремнистые; 6 - песчаники; 7 - глины и сланцы; 8 - глины; 9 - терригенные породы; 10 - бокситы; 11 - антрацит; 12 - нефть; 13 - глубоководная глина; 14 - бурый уголь; 15 - галолиты; 16 - гипсолиты; 17 - рассолы; 18 - почва

Помимо факторов миграции имеет значение, в какой форме пребывает элемент. Согласно В. И. Вернадскому, основные формы нахождения элементов следующие: 1) горные породы и минералы (в том числе природные воды и газы), 2) живое вещество, 3) магмы (силикатные расплавы), 4) рассеянное вещество.

Химическая миграция вещества в географической оболочке по величине сопоставима с механической, а по значимости превосходит последнюю, так как наряду с биогенной миграцией определяет химический состав всех геосфер. Важнейшее значение имеют два сопряженных процесса - окисление и восстановление. Окисление - это перегруппировка электронов между атомами вещества, в результате которой создаются атомы (ионы) с более высокой валентностью. Наиболее характерной реакцией является присоединение кислорода, т.е. собственно окисление. Признаком окислительной обстановки служит наличие свободного кислорода. Окислителями выступают также сера (SO 4 2-), углерод (СО 2), азот (NO 3 1- , NO 2) и др. Восстановлением называют геохимический процесс, в результате которого происходит присоединение элементами (ионами) электронов и понижение их валентности. В геохимии таким важнейшим процессом считается присоединение водорода, или гидрогенизация вещества. Кроме водорода, восстановителями являются сероводород (H 2 S), соединения углерода (СН 4 , СО, органическое вещество), двухвалентное железо и марганец и др.

Парагенетические ассоциации элементов. Понятие парагенезиса ввел В.И.Вернадский в 1909 г., хотя в минералогии это явление было описано за 100 лет до него и называлось смежностью. Под парагенезисом понимают совместное нахождение элементов или минералов, связанных между собой генетически. Отрицательный (запрещенный) парагенезис - это невозможность совместного образования и нахождения элементов или минералов.

Оба понятия имеют общую природу и связаны с условиями образования и взаимодействия химических элементов, которые зависят от близости ионных радиусов, сорбции, радиоактивного распада и других свойств. Знание парагенетических и запрещенных ассоциаций - важная предпосылка поиска полезных ископаемых, а также средство для оценки поведения некоторых элементов в природной среде и в условиях техногенеза.

Химические элементы и соединения, определяющие условия миграции в данной системе, называются ведущими. Обычно их число невелико. Например, геохимическая обстановка в океане определяется наличием кислорода, натрия и хлора. Во многих природных средах установлена ведущая роль иона Н + , от которого зависит рН среды.

Поскольку ведущие элементы определяют поведение в данной системе других элементов и соединений, в геохимии используют принцип подвижных компонентов, сформулированный А. И. Перельманом: геохимическая особенность системы определяется ведущими компонентами. Ведущими являются элементы, обладающие в данной среде высокими кларками, активно мигрирующие и накапливающиеся.

Дата публикования: 2014-12-08 ; Прочитано: 1411 | Нарушение авторского права страницы | Заказать написание работы

сайт - Студопедия.Орг - 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.025 с) ...

Отключите adBlock!
очень нужно

Прежде чем говорить о строении и свойствах географической оболочки, необходимо понять, что такое географическая оболочка. «Отцом» данного термина является известный учёный-географ А. А. Григорьев, который ввёл его в 1932 году. В ней мы живём, она является нашим домом, а чтобы дом оставался прочным, нужно заботиться о нём, хорошо знать состав и разбираться в свойствах географической оболочки.

Строение географической оболочки

История развития планеты Земля неразрывно связана с формированием географической оболочки. Как известно, жизнь на Земле появилась не сразу. Тогда единая географическая оболочка состояла из трёх компонентов: литосферы, атмосферы и гидросферы. Но всё изменилось с появлением живых организмов. Их «рождение» определило появление нового слоя – биосферы. Таким образом, сегодня земной шар состоит из следующих оболочек:

  • нижние слои атмосферы;
  • верхние части литосферы;
  • вся гидросфера;
  • вся биосфера.

Все вышеперечисленные оболочки существуют не изолированно. Они тесно соприкасаются друг с другом и взаимодействуют. Результатом такого близкого «соседства» оказалось невозможность определить их чёткие границы.

В среднем мощность географической оболочки составляет около 55 км. В сравнении с размерами Земли она представляется лишь тонкой плёнкой.

Рис. 1 Компоненты географической оболочки

Атмосфера

До сих пор между учёными ведутся споры о границах географической оболочки. Рассмотрим часто приводимую в зарубежных и отечественных исследованиях теорию.

Первое – нижняя часть атмосферы. Её высота достигает 25-30 км. Она состоит из тропосферы (8-16 км)и нижних слоёв стратосферы (11-30 км). В них отмечается постепенное падение температуры, существование пыли вулканического происхождения, паров воды и живых организмов.

ТОП-1 статья которые читают вместе с этой

Именно в стратосфере расположен так называемый озоновый слой, который защищает все живые организмы и целые биологические системы от губительных солнечных ультрафиолетовых лучей.

Рис. 2 Составляющие атмосферы

Литосфера

К географической оболочке относится верхний слой литосферы – верхняя часть земной коры. Почему только верхняя?

Нельзя забывать, что все оболочки находятся в постоянном взаимодействии, а воздействие атмосферы и гидросферы распространяется на литосферу, начиная с поверхности нашей планеты и до глубины 4-5 км.

Гидросфера и биосфера

Гидросфера – это совокупность всех водных запасов нашей планеты. К географической оболочке относится практически вся гидросфера. Исключение – незначительная часть, которая расположена на больших глубинах.

Биосфера по праву считается самой большой частью географической оболочки. Почему? Ответ на этот вопрос лежит в буквальном переводе данного термина с древнегреческого языка, где bios – жизнь, а schaira – шар. Иными словами, там, где есть жизнь, где возможна деятельность живых организмов, там и находится биосфера. То есть её границы совпадают с границами литосферы, гидросферы и атмосферы: жизнь есть до 4-5 км под землёй, на поверхности земного шара, в воде, на больших глубинах, и в воздухе, начиная с нижних слоёв и заканчивая на высоте 30 км.

Рис. 3 Границы биосферы

Основные свойства географической оболочки

Тесное взаимодействие всех составляющих географической оболочки (ГО) привело к возможности появления особых, присущих только ей свойств:

  • Только в ГО вещества могут пребывать в твёрдом, жидком и газообразном состоянии. Данное свойство очень важно для протекания всех процессов, и особенно – для возникновения жизни;
  • Только для ГО характерно зарождение жизни, а затем и появление человека и человеческого общества. Воздух, вода, солнечная энергия, растения, животные, полезные ископаемые – все условия для развития человека.
  • Только в ГО все существующие процессы происходят, в первую очередь, благодаря солнечной энергии, и уж потом внутренним земным источникам энергии.

Что мы узнали?

Итак, географическая оболочка является важным объектом изучения географической науки. Под ней понимают тесное соприкосновение и взаимодействие атмосферы, литосферы, гидросферы и биосферы. Еще раз назовём основные свойства географической оболочки.

Благодаря такому ГО стало возможным разнообразие видов энергии, зарождение жизни на нашей планете, появление человека, развитие человеческого общества. Кроме того только в географической оболочке одно и то же вещество может пребывать в трёх состояниях: твёрдом, жидком и газообразном.

Данная статья поможет закрепить изученный материал по географии в 7 классе.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 142.

Урок в 7 классе по теме:

«Строение и свойства географической оболочки».

Цели урока:

учебные : расширить знания учащихся о компонентах природного комплекса,

взаимосвязями между ними, о взаимном влиянии компонентов, а также

показать, что географическая оболочка – единое целое;

воспитательные : продолжить формирование научного мировоззрения,

нравственности (в отношении человека к природе), прививать умение

высказывать свою точку зрения;

здоровьесберегающие : выделение главной цели урока и неоднократное ее

повторение различными способами, перевод учащихся из пассивных

слушателей в активно действующих, доброжелательное отношение между

учащимися и учителем, создание условий, обеспечивающих высокую

работоспособность и позволяющих отодвинуть утомление и избежать

переутомление.

развивающие : развитие речи, мышления, сенсорной (восприятие внешнего

мира через органы чувств) сферы личности, эмоционально-волевой (чувства,

переживания, воля) и потребностно - мотивационной областей.

Тип урока: комбинированный.

Оборудование: карточки различного цвета (красные – характеристика Оболочек Земли),

карточки желтого цвета (с описанием структуры синквейна), карточки

зеленого цвета (настроение на уроке),

Формы работы: индивидуальная, групповая, фронтальная.

Ход урока.

I Организационный момент.

Всем, всем, добрый день! Здравствуйте, ребята! Я очень рада, что вы пришли на мой урок. У меня отличное настроение, я улыбаюсь вам. Улыбнитесь и вы мне, и я надеюсь, что мое «солнечное» настроение передастся и вам. Спасибо. Ребята, у нас сегодня необычный урок, на нашем уроке присутствуют гости. Давайте и их «заразим» своим солнечным настроением, повернитесь к ним и улыбнитесь. Я уверена, что они улыбнутся вам в ответ. Итак, солнечное настроение создано у всех и я уверена, что оно поможет нам плодотворно поработать на уроке.

Внимание!

Проверь, дружок,

Готов ли ты начать урок?

Все ль на месте, все ль в порядке?

Книги, ручки и тетрадки.

II . Актуализация знаний.

Ребята, мы с вами целый год изучаем новый для вас предмет географию. На ее уроках мы совершали путешествия в разные уголки земного шара, опускались на морское дно, поднимались ввысь на воздушном шаре, изучали закономерности природы, делали географические и личные открытия. Давайте сейчас вспомним, какие важные темы мы изучали в этом году?

Ответы учащихся.

Действительно, важных тем было немало, но сегодня я предлагаю вам вспомнить оболочки Земли. Каждая группа будет вспоминать особенности одной из оболочек Земли по такому плану:

    название оболочки;

    строение;

    вещественный состав;

    характерные явления.

(На столах у учащихся карточки красного цвета с планом ответа; форма работы - групповая).

1 группа - характеристика литосферы;

2 группа - характеристика гидросферы;

3 группа - характеристика атмосферы;

4 группа - характеристика биосферы

III . Изучение нового материала.

Учитель: Вы познакомились с четырьмя оболочками Земли. Мы с вами выяснили, что оболочки существуют не обособленно, а взаимодействуют друг с другом. Между оболочками Земли существует множество разнообразных видимых и невидимых связей. Эти связи как прочные нити соединяют отдельные оболочки в единое целое – географическую оболочку.

Оболочка Земли, в пределах которой взаимно проникают друг в друга и взаимодействуют нижние слои атмосферы, верхние части литосферы, вся гидросфера и биосфера, называется географической оболочкой.

Географическая оболочка – это окружающая нас природа, природная среда, в которой мы живем, пользуемся всеми ее благами и в свою очередь оказываем на нее влияние, часто отрицательное. Географическая оболочка, по существу, наш дом. Поэтому нам важно знать, как он устроен, чтобы не разрушить его и сохранить таким же прекрасным для будущих поколений. На других планетах нет подобной оболочки. Взаимопроникновение и взаимодействие компонентов географической оболочки можно часто наблюдать в природе. Так, например, вода и воздух, проникая по трещинам и порам вглубь горных пород, участвуют в процессах выветривания. Реки и подземные воды, перемещая минеральные вещества, участвуют в изменении рельефа. Вода и минеральные вещества входят в состав всех живых организмов. Живые организмы, отмирая, образуют огромные толщи горных пород.

Верхнюю и нижнюю границы географической оболочки разные ученые проводят по разному. Резких границ она не имеет. Мощность ее составляет в среднем 55 км. По сравнению с размерами Земли это тонкая пленка.

Давайте определим и запишем в тетрадь свойства географической оболочки:

1.вещества в твердом, жидком, газообразном состоянии;

2.появление жизни -> человека -> человеческого общества;

3.имеются все условия для жизни живых организмов;

4.процессы в географической оболочке происходят под воздействием солнечной энергии.

И так, все компоненты географической оболочки связаны в единое целое посредством круговорота веществ и энергии, благодаря которому осуществляется обмен веществ между литосферой, атмосферой, гидросферой и биосферой. Существуют круговороты.

Учитель: Какие круговороты вы знаете?

На доске схемы:



Ответ детей: круговорот воздуха в тропосфере, круговороты воды, биологический круговорот на суше и в океане, круговорот энергии.

Учитель: Какому круговороту принадлежит ведущая роль и почему?

Ответ: Круговороту воздуха в тропосфере

Он обусловлен неравномерным поступлением солнечного тепла на поверхность Земли, вращением нашей планеты вокруг оси, а также наличием материков и океанов.

Основной поток воздуха образуется между жарким экваториальным и холодными полярными поясами. Круговорот воздуха включает всю систему ветров и вертикальное движение воздушных масс. Он создает условия для образования других круговоротов.

Учитель: Объясните, как распределялось бы тепло на нашей планете, если бы не было движения воздуха?

Могли бы образовываться облака и атмосферные осадки; мировой круговорот воды?

Ответ: Движение воздуха в тропосфере втягивает в глобальный круговорот и гидросферу, образуя мировой круговорот воды.

Огромная роль в жизни географической оболочки принадлежит биологическому круговороту.

Вы сказали, что в современной биосфере обитает около 2,5 млн видов растений и животных, а также грибы и бактерии, которые образуют живое вещество планеты.

А какое царство живых организмов должно иметь самую большую массу?

(По массе в нем преобладают микроскопические организмы, а среди крупных форм – растения.)

Почему необходимо сохранять зеленые растения?

Ответ: Поглощают углекислый газ и выделяют кислород; обеспечивают человека продуктами питания, придают разнообразие окружающей среде

Учитель: Круговороты обеспечивают многократность одних и тех же процессов (например, испарение, выпадение осадков, разложение органических веществ) при ограниченном объеме исходного вещества. Так, атмосферная влага меняется каждые 9 суток и вновь участвует в круговороте. Все круговороты взаимосвязаны между собой. Они обеспечивают относительное равновесие, целостность и развитие географической оболочки.

Вы, наверное устали, я предлагаю вам отдохнуть.

Физкультминутка:

На болоте две подружки,

Две зеленые лягушки.

Рано утром умывались,

Полотенцем растирались,

Ножками топали,

Ручками хлопали,

Вправо, влево наклонялись

И обратно возвращались.

Вот здоровья в чем секрет

Вам, друзья, - физкультпривет!

IV Закрепление нового материала.

Составление синквейна (структура синквейна на карточках розового цвета), форма работы – групповая, время – 3 минуты.

    Название синквейна.

    Два прилагательных.

    Два глагола.

    Фраза на тему синквейна.

    Существительное.

Читают синквены.

Затем учащиеся определяют эмоциональное состояние на каждом этапе урока, вставляя определенный тип улыбки.

В конце этого этапа проводится «Тихий опрос»:

    Какая тема была на уроке?

    Что нового узнали?

    Какие ранее изученные термины, знания вы использовали из ранее изученного материала?

    Для чего можно применить знания, полученные на уроке?

V Домашнее задание. Оценивание.

§ 13, для всех, выборочно - подготовить

ЛЕКЦИЯ 4. ФИЗИЧЕСКИЕ СВОЙСТВА ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Наименование параметра Значение
Тема статьи: ЛЕКЦИЯ 4. ФИЗИЧЕСКИЕ СВОЙСТВА ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ
Рубрика (тематическая категория) География

Происхождение Земли. Вопрос о происхождении нашей планеты непосредственно связан с космогоническими гипотезами, объясняющими образование Солнечной системы в целом. Распад протопланетного диска на отдельные компоненты с образованием большого числа твердых и довольно крупных (до нескольких сотен километров в диаметре) тел - планетезималей, их последующее скопление и соударение способствовали аккреции Земли как небесного формирования.

Новую гипотезу строения Земли предложил в серединœе 70-х годов XX в. В. Н. Ларин. Согласно его представлениям, при возникновении сфер первостепенное значение имела не гравитационная дифференциация, а магнитная сепарация вещества. Исходным материалом послужили не отдельные элементы, а их соединœения в виде гидридов и карбидов металлов.

Главное географическое значение формы Земли состоит в том, что она обусловливает зональное распределœение тепла на земной поверхности (убывание от экватора к полюсам), и, следовательно, зональность всœех явлений, зависящих от теплового режима.

Модели строения Земли. Первая модель, которая разработана В.М.Гольдшмидтом в первой четверти XX в., основана на аналогии процессов дифференциации элементов при доменной плавке и в расплавленной Земле. В соответствии с этой моделью металл погружается к центру Земли, образуя ядро плотностью около 7 г/см 3 , а на поверхность всплывает наиболее легкий ʼʼшлакʼʼ - силикатное вещество, образующее магматические породы земной коры (плотность ниже 3 г/см 3). Между ними располагается исходное вещество - мантия. Основным фактором дифференциации Гольдшмидт считал атомные объёмы элементов. Элементы с минимальными атомными объёмами, соединяясь с желœезом (сидеро-фильные элементы), образовали ядро. Элементы с максимальными атомными объёмами и некоторые другие, обладающие сходством с кислородом (литофильные элементы), составили земную кору и верхнюю мантию - литосферу. Элементы, способные соединяться с серой (халькофильные элементы), образовали сульфидно-оксидную оболочку нижней мантии.

Через 10 лет после гипотезы В.М.Гольдшмидта академик А. Е. Ферсман предложил свою модель внутреннего строения Земли. Он выделил следующие геосферы: гранитно-базальтовую кору (до 70 км от поверхности), перидотитовую (оливиновую) оболочку (до глубины 1200 км), рудную оболочку (до глубины 2450 км) и ядро, состоящее из никелистого желœеза.

В модели Гутенберга-Буллена использована индексация геосфер, популярная и в настоящее время. Авторы выделяют: земную кору (слой А) - гранит, метаморфические породы, габбро; верхнюю мантию (слой В); переходную зону (слой С); нижнюю мантию (слой D), состоящую из кислорода, кремнезема, магния и желœеза. На глубинœе 2900 км проводят границу между мантией и ядром. Ниже находится внешнее ядро (слой Е), а с глубины 5120 м - внутреннее ядро (слой G), сложенное желœезом.

Гипотеза образования Земли и планет в быстро вращающейся протосолнечной небуле разработана японскими исследователями на базе представлений об аккумуляции твердых тел и частиц (силикатных и металлических). Согласно этой гипотезе, в течение всœего периода формирования Земля оставалась окруженной протосолнечной небулой (туманностью).Генеральная схема солнечно-земных связей включает электромагнитное и корпускулярное излучения (рис. 3.7), которые обусловливают ряд процессов и явлений во всœех геосферах (к примеру, полярные сияния, магнитные бури и связанные с ними последствия). Активность Солнца различна, выделяют периоды, когда в результате происходящих на Солнце процессов наша планета получает дополнительное (по сравнению с излучением Солнца в спокойном состоянии) излучение, ĸᴏᴛᴏᴩᴏᴇ влияет на характер многих земных процессов.

Под солнечной активностью обычно понимают совокупность всœех физических и энергетических изменений, происходящих на Солнце и вызывающих на нем видимые образования: пятна и факелы в фотосфере, флоккулы и вспышки в хромосфере, протуберанцы в короне.

Солнечная вспышка - взрывообразное высвобождение большого количества энергии, происходящее обычно вблизи больших групп солнечных пятен. Вспышка сопровождается резким возрастанием яркости излучения во всœех диапазонах волн, а также выбросом плазменных частиц, которые воздействуют на межпланетную среду и планеты.

Солнечная активность - фактор, влияющий на многие процессы в географической оболочке. Первыми встречают солнечную радиацию верхние слои земной атмосферы. Нарушения в ионосфере, возникающие в периоды повышения солнечной активности, отражаются на характере атмосферных процессов в данном слое и вызывают соответствующие изменения в стратосфере и тропосфере, а также в других оболочках планеты.

Орбитальное движение. Вокруг Солнца Земля движется по эллиптической орбите, в одном из фокусов которой расположено Солнце. Скорость орбитального движения равна 29,765 км/с, период обращения - год (365,26 средних солнечных суток). Скорость движения Земли по орбите тем выше, чем меньше радиус - вектор (расстояние от Земли до Солнца).

Суточное вращение Земли происходит вокруг оси, которая в силу гироскопического эффекта стремится сохранить постоянное положение в пространстве. Вращение Земли осуществляется равномерно, однако скорость вращения испытывает флуктуации. Отрезок времени между последовательными прохождениями плоскости меридиана данной точки через центр Солнца называют солнечными сутками. Земля вращается против часовой стрелки, в случае если смотреть с северного полюса (Солнце восходит на востоке и заходит на западе). Ось вращения, полюсы и экватор являются основой географической системы координат.

Географические следствия суточного вращения Земли:

смена дня и ночи - изменение в течение суток положения Солнца относительно плоскости горизонта данной точки;

деформация фигуры Земли - сплюснутость с полюсов (полярное сжатие), связанная с возрастанием центробежной силы от полюсов к экватору;

существование силы Кориолиса, действующей на движущиеся тела (чем больше угловая скорость вращения Земли, тем больше сила Кориолиса);

суперпозиция центробежной силы и силы тяготения, дающая силу тяжести. Центробежная сила растет от нуля на полюсах до максимального значения на экваторе. В соответствии с уменьшением центробежной силы от экватора к полюсу, сила тяжести увеличивается в том же направлении и достигает максимума на полюсе (где она равна силе тяготения).

Движение системы Земля-Луна. Луна создает приливное торможение суточного вращения нашей планеты, ĸᴏᴛᴏᴩᴏᴇ имеет большое географическое значение, в случае если рассматривать длительные (в сотни миллионов лет) отрезки геологического времени.

Изменения скорости вращения Земли. Неравномерность суточного вращения Земли принято характеризовать безразмерной величиной - среднемесячным отклонением (δр):

где Т - длительность земных суток; П - длительность атомных суток, равная 86 400 с; ω = 2π/Т и Ω = 2π/П - угловые скорости, соответствующие земным и атомным суткам.

Общие особенности географической оболочки. Географическая оболочка - это материальная система, возникшая на земной поверхности в результате взаимодействия и взаимопроникновения насыщенных организмами литосферы, атмосферы и гидросферы. Природные тела географической оболочки (горные породы, вода, воздух, растительность, живое вещество) имеют различное агрегатное состояние (твердое, жидкое, газообразное) и разные уровни организации вещества (неживое, живое и биокосное - результат взаимодействия живой и неживой субстанций).

Географическая оболочка образована двумя принципиально разными типами материи: атомарно-молекулярным ʼʼнеживымʼʼ веществом и атомарно-организменным ʼʼживымʼʼ веществом. Первое может участвовать только в физико-химических процессах, в результате которых могут появляться новые вещества, но из тех же химических элементов. Второе обладает способностью воспроизводить себе подобных, но различного состава и облика.

Большинство исследователœей вслед за С. В. Калесником называет взаимосвязанное и взаимообусловленное вещественное тело, повсœеместно обрамляющее планету Земля, географической оболочкой. Существуют и другие названия - наружная земная оболочка (П. И. Броунов), эпигеосфера (А. Г. Исаченко), эпигенема (Р. И. Аболин), физико-географическая оболочка (А. А. Григорьев), биогеносфера (И. М. Забелин), ландшафтная сфера (Ю. К. Ефремов, Ф. Н. Мильков), но они не получили широкого применения.

Составные части географической оболочки. Географическая оболочка, или глобальная геосфера, состоит из неразрывного комплекса частных геосфер, занятых преимущественно одним компонентом определœенного состояния и совместно функционирующих в присутствии биоты. Литосфера, атмосфера и гидросфера образуют практически непрерывные оболочки. Биосфера как совокупность живых организмов в определœенной среде обитания не занимает самостоятельного пространства, а осваивает вышеназванные сферы полностью (гидросферу) или частично (атмосферу и литосферу). В землеведении понятие ʼʼгеографическая оболочкаʼʼ включает в себя всœе живые организмы (каждая частная сфера имеет свою биоту, которая является ее неразрывным компонентом), в связи с этим самостоятельное выделœение биосферы вряд ли крайне важно. В биологии, напротив, выделœение биосферы правомерно. Специфическое положение занимают криосфера (сфера холода) и педосфера (почвенный покров).

Для географической оболочки характерно выделœение зонально-провинциальных обособлений, которые называют ландшафтами, или геосистемами. Эти комплексы возникают при определœенном взаимодействии и интеграции геокомпонентов.

Химические элементы в географической оболочке находятся в свободном состоянии (в воздухе), в виде ионов (в воде) и сложных соединœений (живые организмы, минœералы и др.).

ЛЕКЦИЯ 4. ФИЗИЧЕСКИЕ СВОЙСТВА ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ - понятие и виды. Классификация и особенности категории "ЛЕКЦИЯ 4. ФИЗИЧЕСКИЕ СВОЙСТВА ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ" 2017, 2018.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации