Остроугольный треугольник пример сторон. Виды треугольников

Треугольник - определение и общие понятия

Треугольник – это такой простой многоугольник, состоящий из трех сторон и имеющий столько же углов. Его плоскости ограничиваются 3 точками и 3 отрезками, попарно соединяющими даные точки.

Все вершины любого треугольника, независимо от его разновидности, обозначаются заглавными латинскими буквами, а его стороны изображаются соответствующими обозначениями противоположных вершин, только не большими буквами, а малыми. Так, например, треугольник с вершинами обозначенными буквами А, В и С имеет стороны a, b, c.

Если рассматривать треугольник в евклидовом пространстве, то это такая геометрическая фигура, которая образовалась с помощью трех отрезков, соединяющих три точки, которые не лежат на одной прямой.

Посмотрите внимательно на рисунок, который изображен вверху. На нем точки А, В и С являются вершинами этого треугольника, а его отрезки носят названия сторон треугольника. Каждая вершина этого многоугольника образует внутри его углы.

Виды треугольников



Согласно величины, углов треугольников, они делятся на такие разновидности, как: Прямоугольные;
Остроугольные;
Тупоугольные.



К прямоугольным принадлежат такие треугольники, у которых в наличии есть один прямой угол, а остальные два имеют острые углы.

Остроугольные треугольники – это те, у которых все его углы острые.

А если у треугольника имеется один тупой угол, а два остальных угла острые, то такой треугольник относится к тупоугольным.

Каждый из вас прекрасно понимает, что не все треугольники имеют равные стороны. И соответственно тому, какую длину имеют его стороны, треугольники можно поделить на:

Равнобедренные;
Равносторонние;
Разносторонние.



Задание: Нарисуйте разные виды треугольников. Дайте им определение. Какое между ними отличие вы видите?

Основные свойства треугольников

Хотя эти простые многоугольники могут отличаться друг от друга величиной углов или сторон, но в каждом треугольнике есть основные свойства, характерны для этой фигуры.

В любом треугольнике:

Общая сумма всех его углов равняется 180º.
Если он принадлежит к равносторонним, то каждый его угол равен 60º.
Равносторонний треугольник имеет одинаковые и ровные между собой углы.
Чем меньше сторона многоугольника, тем меньший угол расположен напротив него и наоборот напротив большей стороны находиться больший угол.
Если стороны равные, то напротив них расположены равные углы, и наоборот.
Если взять треугольник и продлить его сторону, то в итоге мы образуется внешний угол. Он равен сумме внутренних углов.
В любом треугольнике его сторона, независимо от того, какую бы вы не выбрали, все равно будет меньше, чем сумма 2-х других сторон, но больше чем их разность:

1. a < b + c, a > b – c;
2. b < a + c, b > a – c;
3. c < a + b, c > a – b.

Задание

В таблице приведены уже известные два угла треугольника. Зная общую сумму всех углов найдите, чему равен третий угол треугольника и занесите в таблицу:

1. Сколько градусов имеет третий угол?
2. К какому виду треугольников он относится?



Признаки равности треугольников

I признак



II признак



III признак



Высота, биссектриса и медиана треугольника

Высота треугольника - перпендикуляр, проведенный из вершины фигуры к его противоположной стороне, называется высотой треугольника. Все высоты треугольника пересекаются в одной точке. Точка пересечения всех 3-х высот треугольника является его ортоцентром.

Отрезок, проведенный из данной вершины и соединяющий ее на средине противоположной стороны, является медианой. Медианы, также как и высоты треугольника, имеют одну общую точку пересечения, так называемый центр тяжести треугольника или центроид.

Биссектриса треугольника - отрезок, соединяющий вершину угла и точку противоположной стороны, а также делящий этот угол пополам. Все биссектрисы треугольника пересекаются в одной точке, которую называют центром окружности, вписанной в треугольник.

Отрезок, который соединяет середины 2-х сторон треугольника, называется средней линией.

Историческая справка

Такая фигура, как треугольник, была известна еще в Древние времена. Об этой фигуре и ее свойствах упоминалось на египетских папирусах четырех тысячелетней давности. Немного позже, благодаря теореме Пифагора и формуле Герона, изучение свойства треугольника, перешло на более высокий уровень, но все же, это происходило более двух тысяч лет назад.

В XV – XVI веках стали проводить много исследований о свойствах треугольника и в итоге возникла такая наука, как планиметрия, которая получила название «Новая геометрия треугольника».

Ученый из России Н. И.Лобачевский внес огромный вклад в познание свойств треугольников. Его труды в дальнейшем нашли применение как в математике, так и физике и кибернетике.

Благодаря знаниям свойств треугольников возникла и такая наука, как тригонометрия. Она оказалась необходимой для человека в его практических потребностях, так как ее применение просто необходимо при составлении карт, измерении участков, да и при конструировании различных механизмов.

А какой самый известный треугольник вы знаете? Это конечно же Бермудский треугольник! Он получил такое название в 50-х годах из-за географического расположения точек (вершин треугольника), внутри которых, согласно существующей теории, возникали связанные с ним аномалии. Вершинами Бермудского треугольника выступают Бермудские острова, Флорида и Пуэрто-Рико.

Задание: А какие теории о Бермудском треугольнике слышали вы?



А известно ли вам, что в теории Лобачевского при сложении углов треугольника их сумма всегда имеет результат меньший, чем 180º. В геометрии Римана, сумма всех углов треугольника больше 180º, а в трудах Эвклида она равна 180 градусам.

Домашнее задание

Решите кроссворд на заданную тему



Вопросы к кроссворду:

1. Как называется перпендикуляр, который провели из вершины треугольника к прямой, расположенной на противоположной стороне?
2. Как, одним словом можно назвать сумму длин сторон треугольника?
3. Назовите треугольник, у которого две стороны равны?
4. Назовите треугольник, у которого есть угол, равный 90°?
5. Какое название носит большая, из сторон треугольника?
6. Название стороны равнобедренного треугольника?
7. Их всегда три в любом треугольнике.
8. Какое название носит треугольник, у которого один из углов превышает 90°?
9. Название отрезка, соединяющего вершину нашей фигуры со срединой противоположной стороны?
10. В простом многоугольнике АВС, заглавная буква А является …?
11. Какое название носит отрезок, делящий угол треугольника пополам.

Вопросы к теме треугольников:

1. Дайте определение.
2. Сколько высот он имеет?
3. Сколько биссектрис у треугольника?
4. Чему равна его сумма углов?
5. Какие виды этого простого многоугольника вам известны?
6. Назовите точки треугольников, которые носят название замечательных.
7. Каким прибором можно измерить величину угла?
8. Если стрелки часов показывают 21 час. Какой угол образуют часовые стрелки?
9. На какой угол поворачивается человек, если ему дана команда «налево», «кругом»?
10. Какие еще определения вам известны, которые связанные с фигурой, имеющей три угла и три стороны?

Предмети > Математика > Математика 7 класс

Деление треугольников на остроугольные, прямоугольные и тупоугольные. Классификация по соотношению сторон делит треугольники на разносторонние, равносторонние и равнобедренные. Причем каждый треугольник одновременно принадлежит к двум . Например, он может быть прямоугольным и разносторонним одновременно.

Определяя вид по типу углов, очень внимательны. Тупоугольным будет называться такой треугольник, у которого один из углов является , то есть составляет боле 90 градусов. Прямоугольный треугольник может быть вычислен по наличию одного прямого (равного 90 градусам) угла. Однако чтобы классифицировать треугольник как остроугольный, вам нужно будет убедиться, что все три его угла острыми.

Определяя вид треугольника по соотношению сторон, для начала вам придется узнать длины всех трех сторон. Однако если по условию длины сторон вам не даны, помочь вам смогут углы. Разносторонним будет являться треугольник, все три стороны которого имеют разную длину. Если длины сторон неизвестны, то треугольник может быть классифицирован как разносторонний в случае, если все три его угла являются разными. Разносторонний треугольник может быть тупоугольным, прямоугольным и остроугольным.

Равнобедренным будет являться треугольник, две из трех сторон которого равны между собой. Если длины сторон вам не даны, ориентируйтесь по двум равным между собой углам. Равнобедренный треугольник, как и разносторонний, может быть и тупоугольным, и прямоугольным и остроугольным.

Равносторонним может быть только такой треугольник, все три стороны которого имеют одинаковую длину. Все его углы также равны между собой, и каждый из них равен 60-ти градусам. Отсюда ясно, что равносторонние треугольники всегда являются остроугольными.

Совет 2: Как определить тупоугольный и остроугольный треугольник

Простейший из многоугольников – это треугольник. Он образуется при помощи трех точек, лежащих в одной плоскости, но не лежащих на одной прямой, попарно соединенных отрезками. Тем не менее, треугольники бывают разных типов, а значит, обладают разными свойствами.

Инструкция

Принято выделять три типа : тупоугольные, остроугольные и прямоугольные. Это по типу углов. Тупоугольным называется треугольник, у которого один из углов является тупым. Тупым называется угол, имеющий величину больше девяноста градусов, но меньше ста восьмидесяти. Например, в треугольнике ABC угол ABC равен 65°, угол BCA равен 95°, угол CAB равен 20°. Углы ABC и CAB меньше 90°, но угол BCA больше, значит, треугольник тупоугольный.

Остроугольным называется треугольник, у которого все углы являются острыми. Острым называется угол, имеющий величину меньше девяноста и больше нуля градусов. Например, в треугольнике ABC угол ABC равен 60°, угол BCA равен 70°, угол CAB равен 50°. Все три угла меньше 90°, значит треугольник . Если вам известно, что у треугольника все стороны равны, это значит, что все углы у него тоже равны между собой, при этом равны шестидесяти градусам. Соответственно, все углы в таком треугольнике меньше девяноста градусов, а следовательно такой треугольник является остроугольным.

Если в треугольнике один из углов равен девяноста градусам, это значит, что он не относится ни широкоугольному типу, ни к остроугольному. Это прямоугольный треугольник.

Если вид треугольника определять по соотношению сторон, они будут равносторонние, разносторонние и равнобедренные. В равностороннем треугольнике все стороны равны, а это, как вы выяснили, говорит о том, что треугольник остроугольный. Если у треугольника равны только две стороны или стороны не равны между собой, он может быть и тупоугольным, и прямоугольным, и остроугольным. Значит, в этих случаях необходимо вычислить или измерить углы и делать умозаключения, согласно пунктам 1, 2 или 3.

Видео по теме

Источники:

  • тупоугольный треугольник

Равенство двух или более треугольников соответствует случаю, когда все стороны и углы данных треугольников равны. Однако существует ряд более простых критериев для доказательства данного равенства.

Вам понадобится

  • Учебник по геометрии, лист бумаги, простой карандаш, транспортир, линейка.

Инструкция

Откройте учебник по геометрии седьмого класса на параграфе о признаках равенства треугольников. Вы увидите, что существует ряд основных признаков, доказывающих равенство двух треугольников. Если два треугольника, равенство которых проверяется, являются произвольными, то для них существует три основных признака равенства. Если же известна какая-то дополнительная информация о треугольниках, то основные три признака дополняются еще несколькими. Это относится, например, к случаю равенства прямоугольных треугольников.

Прочитайте первое правило о равенстве треугольников. Как известно, оно позволяет считать треугольники равными, если можно доказать, что какой-либо один угол и две прилегающие к нему стороны двух треугольников равны. Для того чтобы понять, данный закон, начертите на листе бумаги с помощью транспортира два одинаковых определенных угла, образованных двумя лучами, исходящими из одной точки. Отмерьте линейкой одинаковые стороны от вершины нарисованного угла в обоих случаях. Используя транспортир, измерьте величины полученных углов двух образованных треугольников, убедитесь, что они равны.

Для того чтобы не прибегать к таким практическим мерам для понимания признака равенства треугольников, прочитайте доказательство первого признака равенства. Дело в том, что каждое правило о равенстве треугольников имеет строгое теоретическое доказательство, просто его не удобно использовать в целях запоминания правил.

Прочитайте второй признак равенства треугольников. Он гласит, что два треугольника будут равны в том случае, если какая-либо одна сторона и два прилегающие к ней угла двух таких треугольников равны. Для того чтобы запомнить данное правило, представьте нарисованную сторону треугольника и два прилежащих к ней угла. Представьте, что длины сторон углов постепенно увеличиваются. В конце концов, они пересекутся, образуя третий угол. В данной мысленной задаче важным является то, что точка пересечения сторон, которые мысленно увеличиваются, а также полученный угол однозначно определяются третьей стороной и двумя прилегающими к ней углами.

Если вам не дана никакая информация об углах исследуемых треугольников, то используйте третий признак равенства треугольников. По данному правилу, два треугольника считаются равными, если все три стороны одно из них равны соответствующим трем сторонам другого. Таким образом, данное правило говорит о том, что длины сторон треугольника однозначно определяют все углы треугольника, а значит, они однозначно определяют и сам треугольник.

Видео по теме

Еще дети дошкольного возраста знают, как выглядит треугольник. А вот с тем, какие они бывают, ребята уже начинают разбираться в школе. Одним из видов является тупоугольный треугольник. Понять, что это такое, проще всего, если увидеть картинку с его изображением. А в теории это так называют "простейший многоугольник" с тремя сторонами и вершинами, одна из которых является

Разбираемся с понятиями

В геометрии различают такие виды фигур с тремя сторонами: остроугольный, прямоугольный и тупоугольный треугольники. При этом свойства этих простейших многоугольников одинаковы для всех. Так, для всех перечисленных видов будет соблюдаться такое неравенство. Сумма длин любых двух сторон обязательно будет больше протяженности третьей стороны.

Но для того чтобы быть уверенным, что речь идет именно о законченной фигуре, а не о наборе отдельных вершин, необходимо проверить, чтобы соблюдалось основное условие: сумма углов тупоугольного треугольника равняется 180 о. Это же верно и для других видов фигур с тремя сторонами. Правда, в тупоугольном треугольнике один из углов будет еще больше 90 о, а два оставшихся обязательно будут острыми. При этом именно наибольший угол будет находиться напротив самой длинной стороны. Правда, это далеко не все свойства тупоугольного треугольника. Но и зная лишь эти особенности, школьники могут решать многие задачи по геометрии.

Для каждого многоугольника с тремя вершинами верно и то, что, продолжая любую из сторон, мы получим угол, размер которого будет равен сумме двух несмежных с ним внутренних вершин. Периметр тупоугольного треугольника рассчитывается так же, как и для других фигур. Он равняется сумме длин всех его сторон. Для определения математиками были выведены различные формулы, в зависимости от того, какие изначально присутствуют данные.

Правильное начертание

Одним из важнейших условий решения задач по геометрии является верный рисунок. Часто учителя математики говорят о том, что он поможет не только наглядно представить, что дано и что от вас требуется, но на 80% приблизиться к правильному ответу. Именно поэтому важно знать, как построить тупоугольный треугольник. Если вам нужна просто гипотетическая фигура, то вы можете нарисовать любой многоугольник с тремя сторонами так, чтобы один из углов был больше 90 о.

Если даны определенные значения длин сторон или градусы углов, то чертить тупоугольный треугольник необходимо в соответствии с ними. При этом необходимо стараться максимально точно изобразить углы, высчитывая их при помощи транспортира, и пропорционально данным в задании условиям отобразить стороны.

Основные линии

Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

Так, биссектрисы делят угол пополам, а противоположную сторону - на отрезки, которые пропорциональны прилегающим сторонам.

Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

Серединный перпендикуляр - это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

Работа с окружностями

В начале изучения геометрии детям достаточно понять, как начертить тупоугольный треугольник, научиться отличать его от остальных видов и запомнить его основные свойства. А вот старшеклассникам этих знаний уже мало. Например, на ЕГЭ часто встречаются вопросы про описанные и вписанные окружности. Первая из них касается всех трех вершин треугольника, а вторая имеет по одной общей точке со всеми сторонами.

Построить вписанный или описанный тупоугольный треугольник уже намного сложнее, ведь для этого необходимо для начала выяснить, где должен находиться центр окружности и ее радиус. Кстати, необходимым инструментом станет в этом случае не только карандаш с линейкой, но и циркуль.

Те же сложности возникают при построении вписанных многоугольников с тремя сторонами. Математиками были выведены различные формулы, которые позволяют определить их месторасположение максимально точно.

Вписанные треугольники

Как уже было сказано ранее, если круг проходит через все три вершины, то это называется описанной окружностью. Главным ее свойством является то, что она единственная. Чтобы выяснить, как должна располагаться описанная окружность тупоугольного треугольника, необходимо помнить, что ее центр находится на пересечении трех серединных перпендикуляров, которые идут к сторонам фигуры. Если в остроугольном многоугольнике с тремя вершинами эта точка будет находиться внутри него, то в тупоугольном - за его пределами.

Зная, например, что одна из сторон тупоугольного треугольника равна его радиусу, можно найти угол, который лежит напротив известной грани. Его синус будет равен результату от деления длины известной стороны на 2R (где R - это радиус окружности). То есть sin угла будет равен ½. Значит, угол будет равен 150 о.

Если вам необходимо найти радиус описанной окружности тупоугольного треугольника, то вам пригодятся сведения о длине его сторон (c, v, b) и его площади S. Ведь радиус высчитывается так: (c х v х b) : 4 х S. Кстати, неважно, какого именно у вас вида фигура: разносторонний тупоугольный треугольник, равнобедренный, прямо- или остроугольный. В любой ситуации, благодаря приведенной формуле, вы можете узнать площадь заданного многоугольника с тремя сторонами.

Описанные треугольники

Также довольно часто приходится работать со вписанными окружностями. По одной из формул, радиус такой фигуры, умноженный на ½ периметра, будет равняться площади треугольника. Правда, для ее выяснения вам необходимо знать стороны тупоугольного треугольника. Ведь для того чтобы определить ½ периметра, необходимо сложить их длины и разделить на 2.

Чтобы понять, где должен находиться центр круга, вписанного в тупоугольный треугольник, необходимо провести три биссектрисы. Это линии, которые делят углы пополам. Именно на их пересечении и будет находиться центр окружности. При этом он будет равноудален от каждой из сторон.

Радиус такой окружности, вписанной в тупоугольный треугольник, равняется из частного (p-c) х (p-v) х (p-b) : p. При этом p - это полупериметр треугольника, c, v, b - его стороны.

Самый простой многоугольник, который изучается в школе — это треугольник. Он более понятен для учащихся и встречает меньше трудностей. Несмотря на то что существуют различные виды треугольников, у которых имеются особенные свойства.

Какая фигура называется треугольником?

Образованная тремя точками и отрезками. Первые называются вершинами, вторые — сторонами. Причем все три отрезка должны быть соединены, чтобы между ними образовывались углы. Отсюда и название фигуры «треугольник».

Различия в названиях по углам

Поскольку они могут быть острыми, тупыми и прямыми, то и виды треугольников определяются по этим названиям. Соответственно, групп таких фигур три.

  • Первая. Если все углы треугольника острые, то он будет иметь название остроугольного. Все логично.
  • Вторая. Один из углов тупой, значит треугольник тупоугольный. Проще некуда.
  • Третья. Имеется угол, равный 90 градусам, который называется прямым. Треугольник становится прямоугольным.

Различия в названиях по сторонам

В зависимости от особенностей сторон выделяют такие виды треугольников:

    общий случай — разносторонний, в котором все стороны имеют произвольную длину;

    равнобедренный, у двух сторон которого имеются одинаковые числовые значения;

    равносторонний, длины всех его сторон одинаковые.

Если в задаче не указан конкретный вид треугольника, то нужно чертить произвольный. У которого все углы острые, а стороны имеют разную длину.

Свойства, общие для всех треугольников

  1. Если сложить все углы треугольника, то получится число, равное 180º. И неважно, какого он вида. Это правило действует всегда.
  2. Числовое значение любой стороны треугольника меньше, чем сложенные вместе две другие. При этом она же больше, чем их разность.
  3. Каждый внешний угол имеет значение, которое получается при сложении двух внутренних, не смежных с ним. Причем он всегда больше, чем смежный с ним внутренний.
  4. Напротив меньшей стороны треугольника всегда лежит самый маленький угол. И наоборот, если сторона большая, то и угол будет самым большим.

Эти свойства справедливы всегда, какие бы виды треугольников ни рассматривались в задачах. Все остальные вытекают из конкретных особенностей.

Свойства равнобедренного треугольника

  • Углы, которые прилегают к основанию, равны.
  • Высота, которая проведена к основанию, является также медианой и биссектрисой.
  • Высоты, медианы и биссектрисы, которые построены к боковым сторонам треугольника, соответственно равны друг другу.

Свойства равностороннего треугольника

Если имеется такая фигура, то будут верны все свойства, описанные немного выше. Потому что равносторонний всегда будет равнобедренным. Но не наоборот, равнобедренный треугольник не обязательно будет равносторонним.

  • Все его углы равны друг другу и имеют значение 60º.
  • Любая медиана равностороннего треугольника является его высотой и биссектрисой. Причем они все равны друг другу. Для определения их значений существует формула, которая состоит из произведения стороны на квадратный корень из 3, деленного на 2.

Свойства прямоугольного треугольника

  • Два острых угла дают в сумме значение в 90º.
  • Длина гипотенузы всегда больше, чем у любого из катетов.
  • Числовое значение медианы, проведенной к гипотенузе, равно ее половине.
  • Этому же значению равен катет, если он лежит напротив угла в 30º.
  • Высота, которая проведена из вершины со значением 90º, имеет определенную математическую зависимость от катетов: 1/н 2 = 1/а 2 + 1/в 2 . Здесь: а, в — катеты, н — высота.

Задачи с разными видами треугольников

№1. Дан равнобедренный треугольник. Его периметр известен и равен 90 см. Требуется узнать его стороны. В качестве дополнительного условия: боковая сторона меньше основания в 1,2 раза.

Значение периметра напрямую зависит от тех величин, которые нужно найти. Сумма всех трех сторон и даст 90 см. Теперь нужно вспомнить признак треугольника, по которому он является равнобедренным. То есть две стороны равны. Можно составить уравнение с двумя неизвестными: 2а + в = 90. Здесь а — боковая сторона, в — основание.

Настала очередь дополнительного условия. Следуя ему, получается второе уравнение: в = 1,2а. Можно выполнить подстановку этого выражения в первое. Получится: 2а + 1,2а = 90. После преобразований: 3,2а = 90. Отсюда а = 28,125 (см). Теперь несложно узнать основание. Лучше всего это сделать из второго условия: в = 1,2 * 28,125 = 33,75 (см).

Для проверки можно сложить три значения: 28,125 * 2 + 33,75 = 90 (см). Все верно.

Ответ: стороны треугольника равны 28,125 см, 28,125 см, 33,75 см.

№2. Сторона равностороннего треугольника равна 12 см. Нужно вычислить его высоту.

Решение. Для поиска ответа достаточно вернуться к тому моменту, где были описаны свойства треугольника. Так указана формула для нахождения высоты, медианы и биссектрисы равностороннего треугольника.

н = а * √3 / 2, где н — высота, а — сторона.

Подстановка и вычисление дают такой результат: н = 6 √3 (см).

Эту формулу необязательно запоминать. Достаточно вспомнить, что высота делит треугольник на два прямоугольных. Причем она оказывается катетом, а гипотенуза в нем — это сторона исходного, второй катет — половина известной стороны. Теперь нужно записать теорему Пифагора и вывести формулу для высоты.

Ответ: высота равна 6 √3 см.

№3. Дан МКР — треугольник, 90 градусов в котором составляет угол К. Известны стороны МР и КР, они равны соответственно 30 и 15 см. Нужно узнать значение угла Р.

Решение. Если сделать чертеж, то становится ясно, что МР — гипотенуза. Причем она в два раза больше катета КР. Снова нужно обратиться к свойствам. Одно из них как раз связано с углами. Из него понятно, что угол КМР равен 30º. Значит искомый угол Р будет равен 60º. Это следует из другого свойства, которое утверждает, что сумма двух острых углов должна равняться 90º.

Ответ: угол Р равен 60º.

№4. Нужно найти все углы равнобедренного треугольника. Про него известно, что внешний угол от угла при основании равен 110º.

Решение. Поскольку дан только внешний угол, то этим и нужно воспользоваться. Он образует с внутренним углом развернутый. Значит в сумме они дадут 180º. То есть угол при основании треугольника будет равен 70º. Так как он равнобедренный, то второй угол имеет такое же значение. Осталось вычислить третий угол. По свойству, общему для всех треугольников, сумма углов равна 180º. Значит, третий определится как 180º - 70º - 70º = 40º.

Ответ: углы равны 70º, 70º, 40º.

№5. Известно, что в равнобедренном треугольнике угол, лежащий напротив основания, равен 90º. На основании отмечена точка. Отрезок, соединяющий ее с прямым углом, делит его в отношении 1 к 4. Нужно узнать все углы меньшего треугольника.

Решение. Один из углов можно определить сразу. Поскольку треугольник прямоугольный и равнобедренный, то те, что лежат у его основания, будут по 45º, то есть по 90º/2.

Второй из них поможет найти известное в условии отношение. Поскольку оно равно 1 к 4, то частей, на которые он делится получается всего 5. Значит, чтобы узнать меньший угол треугольника нужно 90º/5 = 18º. Осталось узнать третий. Для этого из 180º (суммы всех углов треугольника) нужно вычесть 45º и 18º. Вычисления несложные, и получится: 117º.

Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.

Математическое представление двух подобных треугольников A 1 B 1 C 1 и A 2 B 2 C 2 , показанных на рисунке, записывается следующим образом:

ΔA 1 B 1 C 1 ~ ΔA 2 B 2 C 2

Два треугольника являются подобными если:

1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A 1 = ∠A 2 , ∠B 1 = ∠B 2 и∠C 1 = ∠C 2

2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}$

3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$\frac{B_1A_1}{B_2A_2}=\frac{A_1C_1}{A_2C_2}$ и $\angle A_1 = \angle A_2$
или
$\frac{A_1B_1}{A_2B_2}=\frac{B_1C_1}{B_2C_2}$ и $\angle B_1 = \angle B_2$
или
$\frac{B_1C_1}{B_2C_2}=\frac{C_1A_1}{C_2A_2}$ и $\angle C_1 = \angle C_2$

Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:

$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}=1$

Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.

Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:

1) три угла каждого треугольника (длины сторон треугольников знать не нужно).

Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 - угол1 - угол2)

2) длины сторон каждого треугольника (углы знать не нужно);

3) длины двух сторон и угол между ними.

Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.

Практические задачи с подобными треугольниками

Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.

Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:

$\frac{PQ}{AB}=\frac{6}{2}=3$ $\frac{QR}{CB}=\frac{12}{4}=3$ $\frac{PR}{AC}=\frac{15}{5}=3$

Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR .

Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R (так как ∠C = 180 - ∠A - ∠B и ∠R = 180 - ∠P - ∠Q)

Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}$

$\frac{BC}{QR}=\frac{6}{12}=\frac{AB}{PQ}=\frac{4}{PQ} \Rightarrow PQ=\frac{4\times12}{6} = 8$ и
$\frac{BC}{QR}=\frac{6}{12}=\frac{AC}{PR}=\frac{7}{PR} \Rightarrow PR=\frac{7\times12}{6} = 14$

Пример №3: Определите длину AB в данном треугольнике.

Решение:

∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.

$\frac{BC}{DE} = \frac{3}{6} = \frac{AB}{AD} = \frac{AB}{AB + BD} = \frac{AB}{AB + 4} = \frac{1}{2} \Rightarrow 2\times AB = AB + 4 \Rightarrow AB = 4$

Пример №4: Определить длину AD (x) геометрической фигуры на рисунке.

Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.

AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC

Исходя из вышеизложенного и учитывая наличие общего угла C , мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.

Следовательно:
$\frac{DE}{AB} = \frac{7}{11} = \frac{CD}{CA} = \frac{15}{CA} \Rightarrow CA = \frac{15 \times 11}{7} = 23.57$
x = AC - DC = 23.57 - 15 = 8.57

Практические примеры

Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.

Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.

Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.

Решение:

Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.

Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,

$\frac{DE}{BC} = \frac{3}{9} = \frac{AD}{AB} = \frac{8}{AB} \Rightarrow AB = \frac{8 \times 9}{3} = 24 м$
x = AB - 8 = 24 - 8 = 16 м

Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.

А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:

$AE = \sqrt{AD^2 + DE^2} = \sqrt{8^2 + 3^2} = 8.54 м$

Аналогично, $AC = \sqrt{AB^2 + BC^2} = \sqrt{24^2 + 9^2} = 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.

y = AC - AE = 25.63 - 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.

Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.

Решение:

Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.

Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$\frac{AB}{DE} = \frac{BC}{CD} = \frac{AC}{CE}$

В условии задачи сказано, что:

AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км

Используя эту информацию, мы можем вычислить следующие расстояния:

$BC = \frac{AB \times CD}{DE} = \frac{15 \times 4.41}{5} = 13.23 км$
$CE = \frac{AC \times CD}{BC} = \frac{13.13 \times 4.41}{13.23} = 4.38 км$

Стив может добраться к дому своего друга по следующим маршрутам:

A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км

F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км

F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км

F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км

Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.

Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.

Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.

Решение:

Геометрическое представление задачи показано на рисунке.

Сначала мы используем подобность треугольников ΔABC и ΔADE.

$\frac{BC}{DE} = \frac{1.6}{2.8} = \frac{AC}{AE} = \frac{AC}{5 + AC} \Rightarrow 2.8 \times AC = 1.6 \times (5 + AC) = 8 + 1.6 \times AC$

$(2.8 - 1.6) \times AC = 8 \Rightarrow AC = \frac{8}{1.2} = 6.67$

Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.

$\frac{BC}{FG} = \frac{1.6}{H} = \frac{AC}{AG} = \frac{6.67}{6.67 + 5 + 30} = 0.16 \Rightarrow H = \frac{1.6}{0.16} = 10 м$

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации