Положения центра тяжести некоторых фигур. Как вычислить центр тяжести плоской ограниченной фигурыс помощью двойного интеграла

Тема относительно проста для усвоения, однако крайне важна при изучении курса сопротивления материалов. Главное внимание здесь необходимо обратить на решение задач как с плоскими и геометрическими фигурами, так и со стандартными прокатными профилями.

Вопросы для самоконтроля

1. Что такое центр параллельных сил?

Центр параллельных сил есть точка, че­рез которую проходит линия равнодействую­щей системы параллельных сил, прило­женных в заданных точках, при любом изменении на­правления этих сил в простран­стве.

2. Как найти координаты центра параллельных сил?

Для определения координат центра параллельных сил воспользуемся теоремой Вариньона.

Относительно оси x

M x (R) = ΣM x (F k) , - y C R = Σy kFk и y C = Σy kFk /Σ Fk .

Относительно оси y

M y (R) = ΣM y (F k) , - x C R = Σx kFk и x C = Σx kFk /Σ Fk .

Чтобы определить координату z C , повернем все силы на 90° так, чтобы они стали параллельны оси y (рисунок 1.5, б). Тогда

M z (R) = ΣM z (F k) , - z C R = Σz kFk и z C = Σz kFk /Σ Fk .

Следовательно, формула для определения радиус-вектора центра параллельных сил принимает вид

r C = Σr kFk /Σ Fk .

3. Что такое центр тяжести тела?

Центр Тяжести- неизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела. Положение центра тяжести твердого тела совпадает с положением его центра масс.

4. Как найти центр тяжести прямоугольника, треугольника, круга?

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольногопараллелепипеда.

5. Как найти координаты центра тяжести плоского составного сечения?

Метод разбиения: если плоскую фигуру можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всей фигуры опредляются по формулам:

Х C = ( s k x k) / S; Y C = ( s k y k) / S,

где x k , y k - координаты центров тяжести частей фигуры;

s k - их площади;

S = s k - площадь всей фигуры.

6. Центр тяжести

1. В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

В первом случае для определения центра тяжести достаточно определить одну координату Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1) и C 2 (x 2 , y 2) . Тогда координаты центра тяжести тела равны

Так как центры фигур лежат на оси ординат (х = 0), то находим только координату Ус .

2 Как учитывается площадь отверстия в фигуре 4 в формуле для определения центра тяжести фигуры?

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

иметь представление о центре параллельных сил и его свойствах;

знать формулы для определения координат центра тяжести плоских фигур;

уметь определять координаты центра тяжести плоских фигур простых геометрических фигур и стандартных прокатных профилей.

ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ
Изучив кинематику точки, обратите внимание на то, что прямолинейное движе­ние точки как неравномерное, так и равномерное всегда характеризуется наличием нормального (центростремительного) ускорения. При поступательном движении тела (характеризуемом движением любой его точки) применимы все формулы кинемати­ки точки. Формулы для определения угловых величин тела, вращающегося вокруг неподвижной оси, имеют полную смысловую аналогию с формулами для определе­ния соответствующих линейных величин поступательно движущегося тела.

Тема 1.7. Кинематика точки
При изучении темы обратите внимание на основные понятия кинематики: ускорение, скорость, путь, расстояние.

Вопросы для самоконтроля

1. В чем заключается относительность понятий покоя и движения?

Механическое движение -это изменение движения тела, или (его частей) в пространстве относительно др. тел с течением времени. Полет брошенного камня, вращение колеса- примеры механического движения.

2. Дайте определение основных понятий кинематики: траектории, расстоянию, пути, скорости, ускорению, времени.

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве. Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают). При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с.

Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами - ускорение - это скорость изменения скорости.
Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv, то среднее ускорение за данный промежуток времени составило: а ср = Δv/Δt.

Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному).
Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt, стремящемся к нулю:

а = lim а ср при t→0 или lim Δv/Δt = dv/dt.

Учитывая, что v = ds/dt, получим: а = dv/dt = d 2 s/dt 2 .

Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени. Единица ускорения - метр, деленный на секунду в квадрате (м/с 2).

Траектория - линия в пространстве, вдоль которой движется материальная точка.
Путь - это длина траектории. Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени:

3. Какими способами может быть задан закон движения точки?

1.Естественный способ задания движения точки.

При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении. Чтобы задать закон движения точки естественным способом необходимо:

1) знать траекторию движения;

2) установить начало отсчета на этой кривой;

3) установить положительное направление движения;

4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t) .

2.Векторный способ задания движения точки

В этом случае положение точки на плоскости или в пространстве определяется вектором-функцией. Этот вектор откладывается от неподвижной точки, выбранной за начало отсчета, его конец определяет положение движущейся точки.

3.Координатный способ задания движения точки

В выбранной системе координат задаются координаты движущейся точки как функции от времени. В прямоугольной декартовой системе координат это будут уравнения:

4. Как направлен вектор истинной скорости точки при криволинейном движе­нии?

При неравномерном движении точки модуль ее скорости с течением времени меняется.
Представим себе точку, движение которой задано естественным способом уравнением s = f(t).

Если за небольшой промежуток времени Δt точка прошла путь Δs, то ее средняя скорость равна:

vср = Δs/Δt.

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю:

v = lim v ср при t→0 или v = lim (Δs/Δt) = ds/dt.

Таким образом, числовое значение истинной скорости равно v = ds/dt.
Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v). Из этого следует, что предел вектора условной скорости v п, равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

5. Как направлены касательное и нормальное ускорения точки?

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости.

6. Какое движение совершает точка, если касательное ускорение равно нулю, а нормальное не изменяется с течением времени?

Равномерное криволинейное движение характеризуется тем, что численное значение скорости постоянно (v = const ), скорость меняется лишь по направлению. В этом случае касательное ускорение равно нулю, так как v = const (рис.б),

а нормальное ускорение не равно нулю, так как r - конечная величина.

7. Как выглядят кинематические графики при равномерном и равнопеременном движении?

При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x . Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX . Поэтому перемещение и скорость при прямолинейном движении можно спроецировать на ось OX и рассматривать их проекции как алгебраические величины.

При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.


В результате изучения темы студент должен:

иметь представление о пространстве, времени, траектории; средней и истиной скорости;

знать способы задания движения точки; параметры движения точки по заданной траектории.

Центром тяжести твердого тела называется геометрическая точка, жестко связанная с этим телом, и являющаяся центром параллельных сил тяжести, приложенных к отдельным элементарным частицам тела (рисунок 1.6).

Радиус-вектор этой точки

Рисунок 1.6

Для однородного тела положение центра тяжести тела не зависит от материала, а определяется геометрической формой тела.

Если удельный вес однородного тела γ , вес элементарной частицы тела

P k = γΔV k (P = γV ) подставить в формулу для определения r C , имеем

Откуда, проецируя на оси и переходя к пределу, получаем координаты центра тяжести однородного объема

Аналогично для координат центра тяжести однородной поверхности площадью S (рисунок 1.7, а)

Рисунок 1.7

Для координат центра тяжести однородной линии длиной L (рисунок 1.7, б)

Способы определения координат центра тяжести

Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

1 Аналитический (путем интегрирования).

2 Метод симметрии . Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

3 Экспериментальный (метод подвешивания тела).

4 Разбиение . Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1 ) и C 2 (x 2 , y 2 ) . Тогда координаты центра тяжести тела равны

Рисунок 1.8

5Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):

Рисунок 1.9

Центры тяжести простейших фигур

Рисунок 1.10

1 Треугольник

Центр тяжести площади треугольник совпадает с точкой пересечения его медиан (рисунок 1.10, а).

DM = MB , CM = (1/3)AM .

2 Дуга окружности

Дуга имеет ось симметрии (рисунок 1.10, б). Центр тяжести лежит на этой оси, т.е. y C = 0 .

dl – элемент дуги, dl = Rdφ , R – радиус окружности, x = Rcosφ , L = 2αR ,

Следовательно:

x C = R(sinα/α) .

3 Круговой сектор

Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox , на которой находится центр тяжести (рисунок 1.10, в).

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R .

Центр тяжести сектора совпадает с центром тяжести дуги AB :

14. Способы задания движения точки.

При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета.

При координатном способе задания движения задаются координаты точки как функции времени:

Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t . Чтобы записать ее уравнение в явной форме, надо исключить из них t .

При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t) . Этим способом удобно пользоваться, если траектория точки заранее известна.

15. 1.2 Скорость точки

Рассмотрим перемещение точки за малый промежуток времени Δt :

средняя скорость точки за промежуток времени Dt . Скорость точки в данный момент времени

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения.

Определение центра тяжести произвольного тела путем последовательного сложения сил, действующих на отдельные его части,- трудная задача; она облегчается только для тел сравнительно простой формы.

Пусть тело состоит только из двух грузов массы и , соединенных стрежнем (рис. 125). Если масса стержня мала по сравнению с массами и , то ею можно пренебречь. На каждую из масс действуют силы тяжести, равные соответственно и ; обе они направлены вертикально вниз, т. е. параллельно друг другу. Как мы знаем, равнодействующая двух параллельных сил приложена в точке , которая определяется из условия

Рис. 125. Определение центра тяжести тела, состоящего из двух грузов

Следовательно, центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс. Если это тело подвесить в точке , оно останется в равновесии.

Так как две равные массы имеют общий центр тяжести в точке, делящей пополам расстояние между этими массами, то сразу ясно, что, например, центр тяжести однородного стержня лежит в середине стержня (рис. 126).

Поскольку любой диаметр однородного круглого диска делит его на две совершенно одинаковые симметричные части (рис. 127), то центр тяжести должен лежать на каждом диаметре диска, т. е. в точке пересечения диаметров - в геометрическом центре диска . Рассуждая сходным образом, можно найти, что центр тяжести однородного шара лежит в его геометрическом центре, центр тяжести однородного прямоугольного параллелепипеда лежит на пересечении его диагоналей и т. д. Центр тяжести обруча или кольца лежит в его центре. Последний пример показывает, что центр тяжести тела может лежать вне тела.

Рис. 126. Центр тяжести однородного стержня лежит в его середине

Рис. 127. Центр однородного диска лежит в его геометрическом центре

Если тело имеет неправильную форму или если оно неоднородно (например, в нем есть пустоты), то расчет положения центра тяжести часто затруднителен и это положение удобнее найти посредством опыта. Пусть, например, требуется найти центр тяжести куска фанеры. Подвесим его на нити (рис. 128). Очевидно, в положении равновесия центр тяжести тела должен лежать на продолжении нити, иначе сила тяжести будет иметь момент относительно точки подвеса, который начал бы вращать тело. Поэтому, проведя на нашем куске фанеры прямую, представляющую продолжение нити, можем утверждать, что центр тяжести лежит на этой прямой.

Действительно, подвешивая тело в разных точках и проводя вертикальные прямые, мы убедимся, что все они пересекутся в одной точке. Эта точка и есть центр тяжести тела (так как он должен лежать одновременно на всех таких прямых). Подобным образом можно определить положение центра тяжести не только плоской фигуры, но и более сложного тела. Положение центра тяжести самолета определяют, вкатывая его колесами на платформы весов. Равнодействующая сил веса, приходящихся на каждое колесо, будет направлена по вертикали, и найти линию, по которой она действует, можно по закону сложения параллельных сил.

Рис. 128. Точка пересечения вертикальных линий, проведенных через точки подвеса и есть центр тяжести тела

При изменении масс отдельных частей тела или при изменении формы тела положение центра тяжести меняется. Так, центр тяжести самолета перемещается при расходовании горючего из баков, при загрузке багажа и т. п. Для наглядного опыта, иллюстрирующего перемещение центра тяжести при изменении формы тела, удобно взять два одинаковых бруска, соединенных шарниром (рис. 129). В том случае, когда бруски образуют продолжение один другого, центр тяжести лежит на оси брусков. Если бруски согнуть в шарнире, то центр тяжести оказывается вне брусков, на биссектрисе угла, который они образуют. Если на один из брусков надеть дополнительный груз, то центр тяжести переместится в сторону этого груза.

Рис. 129. а) Центр тяжести соединенных шарниром брусков, расположенных на одной прямой, лежит на оси брусков, б) Центр тяжести согнутой системы брусков лежит вне брусков

81.1. Где находится центр тяжести двух одинаковых тонких стержней, имеющих длину 12 см и скрепленных в виде буквы Т?

81.2. Докажите, что центр тяжести однородной треугольной пластины лежит на пересечении медиан.

Рис. 130. К упражнению 81.3

81.3. Однородная доска массы 60 кг лежит на двух опорах, как показано на рис. 130. Определите силы, действующие на опоры.

Которого требуется определить, однородное и имеет простую форму – прямоугольную, круглую, шарообразную, цилиндрическую, квадратную, и у него есть центр симметрии, в подобном случае центр тяжести совпадает с центром симметрии.

Для однородного стержня центр тяжести расположен в его середине, то есть в его геометрическом центре. Точно такой же результат получается и для однородного круглого диска. Его центр тяжести лежит в точке пересечения диаметров круга. Поэтому и центр тяжести окажется в его центре, вне точек самого обруча. Найдите центр тяжести однородного шара – он расположен в геометрическом центре сферы. Центр тяжести однородного окажется на пересечении его диагоналей.

Если тело имеет произвольную форму, если оно неоднородно, скажем, имеет выемки, рассчитать положение сложно. Разберитесь, где у такого тела располагается точка пересечения всех сил тяжести, которые действуют на эту фигуру при ее переворачивании. Найти данную точку проще всего опытным путем, воспользовавшись способом свободного подвешивания тела на нити.

Последовательно прикрепляйте тело к нити за разные точки. При равновесии центр тяжести тела должен лежать на линии, совпадающей с линией нити, иначе сила тяжести привела бы тело в движение.

При помощи линейки и карандаша прочертите вертикальные прямые, совпадающие с направлением нитей, которые были закреплены в разных точках. В зависимости от сложности формы тела понадобится провести две-три линии. Все они должны пересечься в одной точке. Эта точка и будет центром тяжести данного тела, потому что центр тяжести должен одновременно находиться на всех подобных прямых.

Определите с помощью способа подвешивания центр тяжести как плоской фигуры, так и более сложного тела, форма которого может изменяться. Например, два бруска, соединенные шарниром, в разложенном состоянии имеют центр тяжести в геометрическом центре, а в согнутом – их центр тяжести вне этих брусков.

Источники:

  • Центр тяжести тел
  • как определить центр тяжести тела
  • Вычисление координат центра тяжести плоской

Еще в школе на уроках физики мы впервые знакомимся с таким понятием, как центр тяжести. Задача не из легких, но хорошо объяснима и понятна. Не только юному физику понадобится знать определение центра тяжести. И если вы столкнулись с данной задачей, стоит прибегнуть к подсказкам и напоминаниям, дабы обновить свою память.

Инструкция

Проштудировав учебники физики, механики, словари или энциклопедии, вы наткнетесь на центра тяжести или как называют центр масс.

В разных науках немного разные определения, но суть, фактически, не теряется. Центр тяжести всегда находится в центре симметрии тела. Для более наглядного понятия «центр тяжести (или по другому называют центр масс) - это , что неизменно связанна с твердым телом. Через неё проходит равнодействующая сил тяжести, действующие на частицу данного тела при любом его положение».

Если центр тяжести твердого тела - это точка, значит она должна иметь свои координаты.

Для определения важно знать координаты по x, y, z, i-той части тела и вес, обозначающийся буквой - p.

Рассмотрим пример задачи.

Даны два тела различных масс m1 и m2,на которые действуют разные весовые силы (как изображено на рисунке). Записав веса:

P1= m1*g, Р2= m2*g;

Центр тяжести находится между двумя массами. И если все тело подвесить в т.О, наступит значение равновесие, то есть эти перестанут перевешивать друг друга.

Разнообразные геометрические фигуры имеют физические и расчеты по поводу центра тяжести. К каждому свой подход и свой метод.

Рассматривая диск, уточняем, что центр тяжести находится внутри него, точнее диаметров (как показано на рисунке в т.С - точка пересечение диаметров). Таким же способом находят центры параллелепипеда или однородного шара.

Представленный диск и два тела с массами m1 и m2 - однородной массы и правильной формы. Здесь можно отметить, что искомый нами центр тяжести находится внутри этих предметов. Однако, в телах с неоднородной массой и неправильной формы центр может находится за . Чувствуете сами, что задача уже становится сложнее.

Равновесием с точки зрения экономической науки называется такое состояние системы, когда каждый из участников рынка не желает изменить свое поведение. Рыночное равновесие определяется, таким образом, как ситуация, когда продавцами предлагается для продажи точно такое количество товара, какое покупатели желают приобрести. Отыскание точки равновесия заключается в построении некоторой идеальной модели рыночного поведения участников экономических отношений.

Инструкция

Воспользуйтесь для нахождения точки равновесия понятиями о спроса и . Это поможет определить, при каком уровне цены обе функции будут иметь равные значения. Спрос характеризует покупателей приобрести товар, а – готовность производителя этот товар продать.

Выразите функции спроса и предложения при помощи таблицы, состоящей из трех столбцов (см. Рис. 1). Первая колонка цифр будет включать значения цены, например, в за единицу товара. Второй столбец определяет объем спроса, а третий – объем предложения за некоторый заранее определенный период.

Используйте для нахождения рыночного равновесия графическое отображение спроса и предложения. Данные из таблицы, аналогичной приведенной выше, перенесите в пространство двух осей, одна из которых (P) отображает уровень цены, а вторая (Q) – количество единиц товара.

Соедините линиями точки, отражающие изменение параметров в каждом столбце. В результате вы получите два графика D и S, пересекающихся в некоторой точке. Кривая D является отражением потребительского спроса на товар, а кривая S картину предложения того же товара на рынке.

Отметьте точку пересечения двух кривых как A. Эта общая точка демонстрирует равновесное значение количества товара и цены на него в данном сегменте рынка. Такое графическое изображение точки равновесия картину спроса и предложения более объемной и наглядной.

Видео по теме

Центр тяжести любого геометрического предмета – точка пересечения всех сил тяжести, действующих на фигуру при любом изменении ее положения. Иногда эта отметка может не совпадать с телом, находясь вне его границ.

Как найти центр тяжести

Автор : Возьмем тело произвольной формы. Можно ли подвесить его на нити так, чтобы оно после подвешивания сохранило свое положение (т.е. не стало поворачиваться) при любой начальной ориентации (рис. 27.1)?

Иными словами, существует ли такая точка, относительно которой сумма моментов сил тяжести, действующих на различные части тела, была бы равна нулю при любой ориентации тела в пространстве?

Читатель : По-моему, да. Такая точка называется центром тяжести тела.

Доказательство. Для простоты рассмотрим тело в виде плоской пластины произвольной формы произвольным образом ориентированное в пространстве (рис. 27.2). Возьмем систему координат х 0у с началом в центре масс – точке С , тогда х С = 0, у С = 0.

Представим это тело в виде совокупности большого числа точечных масс m i , положение каждой из которых задается радиусом-вектором .

По определению центра масс , а координата х С = .

Так как в принятой нами системе координат х С = 0, то . Умножим это равенство на g и получим

Как видно из рис. 27.2, |x i | – это плечо силы . Причем если х i > 0, то момент силы M i > 0, а если х j < 0, то M j < 0, поэтому с учетом знака можно утверждать, что для любого x i момент силы будет равен M i = m i gx i . Тогда равенство (1) эквивалентно равенству , где M i – момент силы тяжести . А это значит, что при произвольной ориентации тела сумма моментов сил тяжести, действующих на тело, будет равна нулю относительно его центра масс.

Чтобы рассматриваемое нами тело находилось в равновесии, к нему необходимо приложить в точке С силу Т = mg , направленную вертикально вверх. Момент этой силы относительно точки С равен нулю.

Поскольку наши рассуждения никак не зависели от того, как именно ориентировано тело в пространстве, мы доказали, что центр тяжести совпадает с центром масс, что и требовалось доказать.

Задача 27.1. Найти центр тяжести невесомого стержня длины l , на концах которого укреплены две точечные массы т 1 и т 2 .

т 1 т 2 l Решение. Будем искать не центр тяжести, а центр масс (так как это одно и то же). Введем ось х (рис. 27.3). Рис. 27.3
х С = ?

Ответ : на расстоянии от массы т 1 .

СТОП! Решите самостоятельно: В1–В3.

Утверждение 1. Если однородное плоское тело имеет ось симметрии, центр тяжести находится на этой оси.

Действительно, для всякой точечной массы m i , расположенной справа от оси симметрии, найдется такая же точечная масса , расположенная симметрично относительно первой (рис. 27.4). При этом сумма моментов сил .

Поскольку все тело можно представить разбитым на подобные пары точек, то суммарный момент сил тяжести относительно любой точки, лежащей на оси симметрии равен нулю, а значит, на этой оси находится и центр тяжести тела. Отсюда следует важный вывод: если тело имеет несколько осей симметрии, то центр тяжести лежит на пересечении этих осей (рис. 27.5).

Рис. 27.5

Утверждение 2 . Если два тела массами т 1 и т 2 соединены в одно, то центр тяжести такого тела будет лежать на отрезке прямой, соединяющей центры тяжести первого и второго тела (рис. 27.6).

Рис. 27.6 Рис. 27.7

Доказательство. Расположим составное тело так, чтобы отрезок, соединяющий центры тяжести тел был вертикальным. Тогда сумма моментов сил тяжести первого тела относительно точки С 1 равна нулю, и сумма моментов сил тяжести второго тела относительно точки С 2 равна нулю (рис. 27.7).

Заметим, что плечо силы тяжести любой точечной массы т i одно и то же относительно любой точки, лежащей на отрезке С 1 С 2 , а значит, и момент силы тяжести относительно любой точки, лежащей на отрезке С 1 С 2 , один и тот же. Следовательно, сил тяжести всего тела равен нулю относительно любой точки отрезка С 1 С 2 . Таким образом, центр тяжести составного тела лежит на отрезке С 1 С 2 .

Из утверждения 2 следует важный практический вывод, который четко сформулирован в виде инструкции.

Инструкция,

как искать центр тяжести твердого тела, если его можно разбить

на части, положения центров тяжести каждой из которых известно

1. Следует заменить каждую часть массой, расположенной в центре тяжести этой части.

2. Найти центр масс (а это то же самое, что и центр тяжести) полученной системы точечных масс, выбрав удобную систему координат х 0у , по формулам:

В самом деле, расположим составное тело так, чтобы отрезок С 1 С 2 был горизонтальным, и подвесим его на нитях в точках С 1 и С 2 (рис. 27.8,а ). Ясно, что тело будет находиться в равновесии. И это равновесие не нарушится, если мы заменим каждое тело точечными массами т 1 и т 2 (рис. 27.8,б ).

Рис. 27.8

СТОП! Решите самостоятельно: С3.

Задача 27.2. В двух вершинах равностороннего треугольника помещены шарики массы т каждый. В третьей вершине помещен шарик массы 2т (рис. 27.9,а ). Сторона треугольника а . Определить центр тяжести этой системы.

т 2т а Рис. 27.9
х С = ? у С = ?

Решение . Введем систему координат х 0у (рис. 27.9,б ). Тогда

,

.

Ответ : х С = а /2; ; центр тяжести лежит на половине высоты АD .

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации