Практическое использование бактерий в пищевых производствах. Где и как человек использует бактерии

Введение

Современная биотехнология опирается на достижения естествознания, техники, технологии, биохимии, микробиологии, молекулярной биологии, генетики. Биологические методы используются в борьбе с загрязнением окружающей среды и вредителями растительных и животных организмов. К достижениям биотехнологии можно также отнести применение иммобилизованных ферментов, получение синтетических вакцин, использование клеточной технологии в племенном деле.

Бактерии, грибы, водоросли, лишайники, вирусы, простейшие в жизни людей играют значительную роль. С давних времен люди использовали их в процессах хлебопечения, приготовления вина и пива, в различных производствах.

Микроорганизмы помогают людям в производстве эффективных питательных белковых веществ и биологического газа. Их используют при применении биотехнических методов очистки воздуха и сточных вод, при использовании биологических методов уничтожения сельскохозяйственных вредителей, при получении лечебных препаратов, при уничтожении утильсырья.

Основная цель данной работы – изучить методы и условия культивирования микроорганизмов

· Ознакомиться с областями применения микроорганизмов

· Изучить морфологию и физиологию микроорганизмов

· Изучить основные виды и состав питательных сред

· Дать понятие и ознакомиться с биореактором

· Раскрыть основные методы культивирования микроорганизмов

Морфология и физиология микроорганизмов

Морфология

Классификация микроорганизмов

Бактерии

Бактерии - это одноклеточные прокариотные микроорганизмы. Ве­личина их измеряется в микрометрах (мкм). Различают три основные формы: шаровидные бактерии - кокки, палочковидные и извитые.

Кокки (греч. kokkos - зерно) имеют шаровидную или слегка вытя­нутую форму. Различаются между собой в зависимости от того, как они располагаются после деления. Одиночно расположенные кокки - мик­рококки, расположенные попарно - диплококки. Стрептококки де­лятся в одной плоскости и после деления не расходятся, образуя цепоч­ки (греч. streptos - цепочка). Тетракокки образуют сочетания из четырех кокков в результате деления в двух взаимно перпендикулярных плоскостях, сарцины (лат. sarcio - связывать) образуются при делении в трех взаимно перпендику­лярных плоскостях и имеют вид скоплений по 8-16 кокков. Стафило­кокки в результате беспорядочного деления образуют скопления, напо­минающие гроздь винограда (греч. staphyle - виноградная гроздь).

Палочковидные бактерии (греч. bacteria - палочка), способные образовывать споры, называют бациллами в том случае, если спора не шире самой палочки, и клостридиями, если диаметр споры превышает диаметр палочки. Палочковидные бактерии, в отличие от кокков, разнообразны по ве­личине, форме и расположению клеток: короткие (1 -5 мкм) толстые, с зак­ругленными концами бактерии кишечной группы; тонкие, слегка изогну­тые палочки туберкулеза; располагающиеся под углом тонкие палочки дифтерии; крупные (3-8 мкм) палочки сибирской язвы с "обрубленными" концами, образующие длинные цепочки - стрептобациллы.

К извитым формам бактерий относятся вибрионы, имеющие слегка изогнутую форму в виде запятой (холерный вибрион) и спириллы, состоящие из нескольких завитков. К извитым формам также относятся кампилобактеры, похожие под микроскопом на крылья летящей чайки.

Структура бактериальной клетки.

Структурные элементы бактери­альной клетки можно условно разделить на:

а) постоянные структурные элементы - имеются у каждого вида бактерий, в течение всей жизни бакте­рии; это клеточная стенка, цитоплазматическая мембрана, цитоплазма, нуклеоид;

Б) непостоянные структурные элементы, которые способны обра­зовывать не все виды бактерий, а те бактерии, которые образуют их, могут терять их и вновь приобретать в зависимости от условий существования. Это капсула, включения, пили, споры, жгутики.

Рис. 1.1. Структура бактериальной клетки

Клеточная стенка покрывает всю поверхность клетки. У грамположительных бактерий клеточная стенка более толстая: до 90% - это полимерное соединение пептидогликан, связанный с тейхоевыми кис­лотами, и слой белка. У грамотрицательных бактерий клеточная стенка тоньше, но сложнее по составу: состоит из тонкого слоя пептидогликана, липополисахаридов, белков; она покрыта наружной мембраной.

Функции клеточной стенки состоят в том, что она:

Является осмотическим барьером,

Определяет форму бактериальной клетки,

Защищает клетку от воздействий окружающей среды,

Несет разнообразные рецепторы, способствующие прикреплению фагов, колицинов, а также различных химических соединений,

Через клеточную стенку в клетку поступают питательные вещества и выделяются продукты обмена,

В клеточной стенке локализован О-антиген и с ней связан эндотоксин (липид А) бактерий.

Цитоплазматическая мембрана

К клеточной стенке бактерий примыкает цитоплазматическая мембрана , строение которой аналогично мембранам эукариотов (состоит из двойного слоя липидов , главным образом фосфолипидов со встроенными поверхностными и интегральными белками ). Она обеспечивает :

Селективную проницаемость и транспорт растворимых веществ в клетку,

Транспорт электронов и окислительное фосфорилирование,

Выделение гидролитических экзоферментов, биосинтез различных полимеров.

Цитоплазматическая мембрана ограничивает цитоплазму бактерий , которая представляет собой гранулярную структуру . В цитоплазме локализованы рибосомы и бактериальный нуклеоид , в ней также могут находиться включения и плазмиды (внехромосомная ДНК). Кроме обязательных структур бактериальные клетки могут иметь споры.

Цитоплазма - внутреннее гелеобразное содержимое бактериальной клетки, пронизано мембранными структурами, создающими жест­кую систему. В цитоплазме содержатся рибосомы (в которых осуще­ствляется биосинтез белков), ферменты, аминокислоты, белки, рибонуклеиновые кислоты.

Нуклеоид - это хромосома бактерий, двойная нить ДНК, коль­цевидно замкнутая, связанная с мезосомой. В отличие от ядра эукариотов, нить ДНК свободно располагается в цитоплазме, не имеет ядерной оболочки, ядрышка, белков-гистонов. Нить ДНК во много раз длиннее самой бактерии (например, у кишечной палочки длина хро­мосомы более 1 мм).

Помимо нуклеоида, в цитоплазме могут находиться внехромосомные факторы наследственности, называемые плазмидами. Это ко­роткие кольцевидные нити ДНК, прикрепленные к мезосомам.

Включения содержатся в цитоплазме некоторых бактерий в виде зерен, которые можно обнаружить при микроскопии. Большей частью это запас питательных веществ.

Пили (лат. pili - волоски) иначе реснички, фимбрии, бахромки, вор­синки - короткие нитевидные отростки на поверхности бактерий.

Жгутики. Многие виды бактерий способны передвигаться благо­даря наличию жгутиков. Из патогенных бактерий только среди пало­чек и извитых форм имеются подвижные виды. Жгутики представляют собой тонкие эластичные нити, длина которых у некоторых видов в несколько раз больше длины тела самой бактерии.

Число и располо­жение жгутиков является характерным видовым признаком бактерий. Различают бактерии: монотрихи - с одним жгутиком на конце тела, лофотрихи - с пучком жгутиков на конце, амфитрихи, имеющие жгути­ки на обоих концах, и перитрихи, у которых жгутики расположены по всей поверхности тела. К монотрихам относится холерный вибрион, к перитрихам - сальмонеллы брюшного тифа.

Капсула - наружный слизистый слой, который имеется у многих бактерий. У одних видов он настолько тонок, что обнаруживается толь­ко в электронном микроскопе - это микрокапсула. У других видов бак­терий капсула хорошо выражена и видна в обычном оптическом мик­роскопе - это макрокапсула.

Микоплазмы

Микоплазмы относятся к прокариотам, размеры их 125-200 нм. Это наиболее мелкие из клеточных микробов, величина их близка к преде­лу разрешающей способности оптического микроскопа. У них отсут­ствует клеточная стенка. С отсутствием клеточной стенки связаны характерные осо­бенности микоплазм. Они не имеют постоянной формы, поэтому встре­чаются сферические, овальные, нитевидные формы.

Риккетсии

Хламидии

Актиномицеты

Актиномицеты - одноклеточные микроорганизмы, относятся к прокариотам. Их клетки имеют такую же структуру, как бактерии: кле­точную стенку, содержащую пептидогликан, цитоплазматическую мем­брану; в цитоплазме расположены нуклеоид, рибосомы, мезосомы, внутриклеточные включения. Поэтому патогенные актиномицеты чувс­твительны к антибактериальным препаратам. В то же время они име­ют сходную с грибами форму ветвящихся переплетающихся нитей, а некоторые актиномицеты, относящиеся к семейству стрентомицет, раз­множаются спорами. Другие семейства актиномицет размножаются путем фрагментации, то есть распада нитей на отдельные фрагменты.

Актиномицеты широко распространены в окружающей среде, осо­бенно в почве, участвуют в круговороте веществ в природе. Среди актиномицетов есть продуценты антибиотиков, витаминов, гормонов. Большинство антибиотиков, применяемых в настоящее время, проду­цируется актиномицетами. Это стрептомицин, тетрациклин и другие.

Спирохеты.

Спирохеты относятся к прокариотам. Имеют признаки, общие как с бактериями, так и с простейшими микроорганизмами. Это од­ноклеточные микробы, имеющие форму длинных тонких спирально изогнутых клеток, способны к активному движению. В неблагоприят­ных условиях некоторые из них могут переходить в форму цисты.

Исследования в электронном микроскопе позволили установить структуру клеток спирохет. Это цитоплазматические цилиндры, окру­женные цитоплазматической мембраной и клеточной стенкой, содер­жащей пептидогликан. В цитоплазме находятся нуклеоид, рибосомы, мезосомы, включения.

Под цитоплазматической мембраной располо­жены фибриллы, обеспечивающие разнообразное движение спирохет - поступательное, вращательное, сгибательное.

Патогенные представители спирохет: Treponema pallidum - вызывает сифилис, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

Грибы

Грибы (Fungi, Mycetes) - эукариоты, низшие растения, лишенные хлорофилла, в связи с чем они не синтезируют органические соедине­ния углерода, то есть это гетеротрофы, имеют дифференцированное ядро, покрыты оболочкой, содержащей хитин. В отличие от бактерий, грибы не имеют в составе оболочки пептидогликана, поэтому нечув­ствительны к пенициллинам. Для цитоплазмы грибов характерно при­сутствие большого количества разнообразных включений и вакуолей.

Среди микроскопических грибов (микромицетов) имеются однок­леточные и многоклеточные микроорганизмы, различающиеся между собой по морфологии и способам размножения. Для грибов характер­но разнообразие способов размножения: деление, фрагментация, поч­кование, образование спор - бесполых и половых.

При микробиологических исследованиях наиболее часто прихо­диться сталкиваться с плесенями, дрожжами и представителями сбор­ной группы так называемых несовершенных грибов.

Плесени образуют типичный мицелий, стелющийся по питатель­ному субстрату. От мицелия вверх подымаются воздушные ветви, ко­торые оканчиваются плодоносящими телами различной формы, несущими споры.

Мукоровые или головчатые плесени (Mucor) - одноклеточные гри­бы с шаровидным плодоносящим телом, наполненным эндоспорами.

Плесени рода Aspergillus - многоклеточные грибы с плодоносящим телом, при микроскопии напоминающим наконечник лейки, разбрыз­гивающей струйки воды; отсюда название "леечная плесень". Некото­рые виды аспергилл используются в промышленности для производства лимонной кислоты и других веществ. Есть виды, вызывающие заболе­вания кожи и легких у человека - аспергиллезы.

Плесени рода Penicillum, или кистевики - многоклеточные грибы с плодоносящим телом в виде кисточки. Из некоторых видов зеленой плесени был получен первый антибиотик - пенициллин. Среди пенициллов есть патогенные для человека виды, вызывающие пенициллиоз.

Различные виды плесеней могут быть причиной порчи пищевых про­дуктов, медикаментов, биологических препаратов.

Дрожжи - дрожжевые грибы (Saccharomycetes, Blastomycetes) име­ют форму круглых или овальных клеток, во много раз крупнее бакте­рий. Средний размер дрожжевых клеток приблизительно равен попе­речнику эритроцита (7-10 мкм).

Вирусы

Вирусы - (лат. virus яд) - мельчайшие микроорганизмы, не имеющие клеточного строения, белоксинтезирующей системы и способные к воспроизведению лишь в клетках высокоорганизованных форм жизни. Они широко распространены в природе, поражают животных, растения и другие микроорганизмы.

Зрелая вирусная частица, известная как вирион, состоит из нуклеиновой кислоты - генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса - покрытой защитной белковой оболочкой - капсидом. Капсид складывается из одинаковых белковых субъединиц, называемыхкапсомерами . Вирусы могут также иметь липидную оболочку поверх капсида (суперкапсид ), образованную из мембраны клетки-хозяина. Капсид состоит из белков, кодируемых вирусным геномом, а его форма лежит в основе классификации вирусов по морфологическому признаку . Сложноорганизованные вирусы, кроме того, кодируют специальные белки, помогающие в сборке капсида. Комплексы белков и нуклеиновых кислот известны как нуклеопротеины , а комплекс белков вирусного капсида с вирусной нуклеиновой кислотой называется нуклеокапсидом .

Рис. 1.4. Схематичное строение вируса: 1 - сердцевина (однонитчатая РНК); 2 - белковая оболочка (Капсид); 3 - дополнительная липопротеидная оболочка; 4 - Капсомеры (структурные части Капсида).

Физиология микроорганизмов

Физиология микроорганизмов изучает жизнедеятельность микробных клеток, процессы их питания, дыхания, роста, размножения, закономерности взаимодействия с окружающей средой.

Метаболизм

Метаболизм – совокупность биохимических процессов, направленных на получение энергии и воспроизведение клеточного материала.

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

Метаболизм складывается из двух взаимосвязанных процессов: катаболизма и анаболизма.

Катаболизм (энергетический метаболизм) – это процесс расщепления крупных молекул до более простых, в результате которого выделяется энергия, накапливающаяся в форме АТФ:

а) дыхание;

б) брожение.

Анаболизм (конструктивный метаболизм) – обеспечивает синтез макромолекул, из которых строится клетка:

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

При этом используется энергия, полученная в процессе катаболизма. Для метаболизма бактерий характерны высокая скорость процесса и быстрая адаптация к меняющимся условиям окружающей среды.

В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

По месту действия выделяют:

1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

Питание

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Различные органические и неорганические вещества поступают в бактериальную клетку в процессе питания. Специальных органов питания у бактерий нет. Вещества проникают через всю поверхность клетки, в виде мелких молекул. Такой способ питания называется голофитным . Необходимым условием для прохождения питательных веществ в клетку является их растворимость в воде и малая величина (т.е. белки должны быть гидролизованы до аминокислот, углеводы – до ди- или моносахаридов и т. д.).

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ:

-пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз ;

- активный транспорт- против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

- транслокация (перенос групп) - против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы- органогены , необходимые для синтеза органичеких соединений- углерод, азот, водород, кислород.

Типы питания. Широкому распространению бактерий способствует разнообразные типы питания. Микробы нуждаются в углероде, кислороде, азоте, водороде, сере, фосфоре и других элементах (органогенах).

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества – СО2);

2) гетеротрофы;

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Дыхание микроорганизмов.

Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О 2), при анаэробном- связанный кислород (-NO 3 , =SO 4 , =SO 3).

Аэробное дыхание донор водорода H 2 O

Анаэробное дыхание

Нитратное окисление NO 3

(факультативные анаэробы) донор водорода N 2

Сульфатное окисление SO 4

(облигатные анаэробы) донор водорода H 2 S

По типу дыхания выделяют четыре группы микроорганизмов.

1.Облигатные (строгие) аэробы . Им необходим молекулярный (атмосферный) кислород для дыхания.

2.Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO 2 , например до 10- процентной концентрации.

3.Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные,

а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.

4.Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H 2 O 2 - перекись водорода, -О 2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза . У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH 2).

Рост и размножение бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам. Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Питательные среды

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (наблюдался рост бактерий, особенно для жидких сред).

6. Стерильность (отсутствие других бактерий).

Классификация питательных сред

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.).

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон,

желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта-Тароцци, среда Вильсона-Блера и др.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15-0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

Агар- полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред.

4. В зависимости от назначения ПС различают:

Дифференциально-диагностические

Элективные

Селективные

Ингибиторные

Среды для поддержания культуры

Накопительные (насыщения, обогащения)

Консервирующие

Контрольные.

Дифференциально-диагностические - это сложные среды, на кото­рых микроорганизмы разных видов растут по-разному, в зависимости от биохимических свойств культуры. Они предназначены для иденти­фикации видовой принадлежности микроорганизмов, широко исполь­зуются в клинической бактериологии и проведении генетических ис­следований.

Селективные, ингибиторные и элективные ПС предназначены для выращивания строго определенного вида микроорганизма. Эти среды служат для выделения бактерий из смешанных популяций и диффе­ренцирования их от сходных видов. В их состав добавляют различные вещества, подавляющие рост одних видов и не влияющие на рост дру­гих.

Среду можно сделать селективной за счет величины рН. В последнее время в качестве веществ, придающих средам селективный характер, применяют антимикробные агенты, такие как антибиотики и другие химиотерапевтические вещества.

Элективные ПС нашли широкое применение при выделении возбу­дителей кишечных инфекций. При добавлении малахитовой или брил­лиантовой зелени, солей желчных кислот (в частности, таурохолево-кислого натрия), значительного количества хлорида натрия или ли­моннокислых солей подавляется рост кишечной палочки, но рост па­тогенных бактерий кишечной группы не ухудшается. Некоторые элек­тивные среды готовят с добавлением антибиотиков.

Среды для поддержания культуры составляют так, чтобы в них не было селективных веществ, способных вызывать изменчивость куль­тур.

Накопительные ПС (обогащения, насыщения) - это среды, на кото­рых определенные виды культур или группы культур растут быстрее и интенсивнее сопутствующих. При культивировании на этих средах обычно не применяются ингибиторные вещества, а, наоборот, создают благоприятные условия для определенного присутствующего в смеси вида. Основой сред накопления являются желчь и ее соли, тетратионат натрия, различные красители, селенитовые соли, антибиотики и др.

Консервирующие среды служат для первичного посева и транспор­тировки исследуемого материала.

Выделяют также контрольные ПС, которые применяют для контро­ля стерильности и общей бактериальной обсемененности антибиоти­ков.

5. По набору питательных веществ выделяют:

Минимальные среды, которые содержат лишь источники питания, достаточные для роста;

Богатые среды, в состав которых входят многие дополнительные вещества.

6. По масштабам использования ПС подразделяются на:

> производственные (технологические);

> среды для научных исследований с ограниченным по объему применением.

Производственные ПС должны быть доступными, экономичными, удобными в приготовлении и использовании для крупномасштабного культивирования. Среды для научных исследований, как правило, бы­вают синтетическими и богатыми по набору питательных веществ.

Выбор сырьевых источников для конструирования питательных сред

Качество ПС во многом определяется полноценностью состава пи­тательных субстратов и исходного сырья, используемого для их при­готовления. Большое разнообразие видов сырьевых источников ставит сложную задачу выбора наиболее перспективных, пригодных для кон­струирования ПС требуемого качества. Определяющую роль в данном вопросе играют, прежде всего, биохимические показатели состава сы­рья, от которых зависит выбор способа и режимов его переработки с целью наиболее полного и эффективного использования содержащих­ся в нем питательных веществ.

Для получения ПС с особо ценными свойствами применяют прежде всего традиционные источники белка животного происхождения, а именно мясо крупного рогатого скота (КРС), казеин, рыбу и продукты ее переработки. Наиболее полно разработаны и широко применяются ПС на основе мяса КРС.

Учитывая дефицит кильки каспийской, широко применяемой в не­далеком прошлом, для получения рыбных питательных основ стала использоваться более дешевая и доступная непищевая продукция рыб­ной промышленности - сухой криль, отходы переработки мяса криля, филетированный минтай и его перезрелую икру. Наибольшее же рас­пространение получила рыбная кормовая мука (РКМ), удовлетворяю­щая требованиям биологической ценности, доступности и относитель­ной стандартности.

Довольно широкое распространение получили ПС на основе казеи­на, который содержит все компоненты, имеющиеся в молоке: жир, лак­тозу, витамины, ферменты и соли. Однако необходимо отметить, что в связи с удорожанием продуктов переработки молока, а также повыше­нием спроса на казеин на мировом рынке, применение его носит не­сколько ограниченный характер.

Из непищевых источников белка животного происхождения в каче­стве сырья для конструирования полноценных ПС необходимо выде­лить кровь убойных животных, которая богата биологически активны­ми веществами и микроэлементами и содержит продукты клеточного и тканевого обмена.

Гидролизаты крови сельскохозяйст­венных животных используются в качестве заменителей пептона в дифференциально-диагностических питательных средах.

К другим видам белоксодержащего сырья животного происхожде­ния, которые могут быть использованы для конструирования ПС, от­носятся: плацента и селезенка КРС, сухой белковый концентрат - про­дукт переработки мясных отходов, спилковая обрезь, получаемая при обработке кожи, эмбрионы домашних птиц - отход вакцинного произ­водства, кровезаменители с истекшим сроком годности, творожная сыворотка, мягкие ткани моллюсков и ластоногих.

Перспективно использование тушек пушных зверей из зверохозяйств, крови КРС, получаемой на мясокомбинате, обезжиренного молока и молочной сыворотки (отходы маслозаводов).

В целом же ПС, приготовленные из сырья животного происхожде­ния, имеют высокое содержание основных питательных компонентов, являются полноценными и сбалансированными по аминокислотному составу и достаточно хорошо изучены.

Из продуктов растительного происхождения в качестве белкового субстрата для ПС возможно использование кукурузы, сои, гороха, кар­тофеля, люпина и др. Однако, растительное сельскохозяйственное сы­рье содержит белок, несбалансированный состав которого зависит от условий выращивания культур, а также липиды в больших количест­вах, чем продукты животного происхождения.

Обширную группу составляют ПС, изготавливаемые из белкового сырья микробного происхождения (дрожжи, бактерии и т.д.). Амино­кислотный состав микроорганизмов, служащих субстратом для приготовления ПС, хорошо изучен, а биомасса используемых микроорга­низмов является полноценной по составу питательных веществ и ха­рактеризуется повышенным содержанием лизина и треонина.

Разработан целый ряд ПС комбинированного состава из белковых субстратов различного происхождения. К ним относятся дрожжевая казеиновая питательная среда, дрожжевая мясная и т.д. Основой большинства известных ПС являются гидролизаты казеи­на, мяса КРС и рыбы (до 80%).

Удельный же вес непищевого сырья в технологии конструирования ПС составляет всего 15% и в дальней­шем требует увеличения.

Используемое для получения питательной основы (ПС) непищевое сырье должно удовлетворять определенным требованиям, а именно быть:

^ полноценным (количественный и качественный состав сырья должен, в основном, удовлетворять питательным потребностям микро­организмов и клеток, для которых разрабатываются ПС);

^ доступным (иметь достаточно обширную сырьевую базу);

^ технологичным (затраты на внедрение в производство должны осуществляться с использованием имеющегося оборудования или су­ществующей технологии);

^ экономичным (затраты на внедрение технологии при переходе на новое сырье и его переработку не должны превосходить нормы за­трат для получения целевого продукта);

^ стандартным (иметь длительные сроки хранения без изменения физико-химических свойств и питательной ценности)

Периодическая система

Периодической системой культивирования называют систему, в которой после внесения бактерий (засева) в питательную среду не производится ни добавления, ни удаления каких-либо компонентов, кроме газовой фазы. Отсюда следует, что периодическая система может поддерживать размножение клеток в течение ограниченного времени, на протяжении которого состав питательной среды изменяется от благоприятного (оптимального) для их роста до неблагоприятного, вплоть до полного прекращения п

Методы определения суммарной биохимической активности почвенной микрофлоры

Характеристика микробов клеточной организации

Роль микроорганизмов в природе и сельском хозяйстве

Широкое распространение микроорганизмов свидетельствует об их огромной роли в природе. При их участии происходит разложение различных органических веществ в почвах и водоемах, они обусловливают круговорот веществ и энергии в природе; от их деятельности зависит плодородие почв, формирование каменного угля, нефти, многих других полезных ископаемых. Микроорганизмы участвуют в выветривании горных пород и прочих природных процессах.

Многие микроорганизмы используют в промышленном и сельскохозяйственном производстве. Так, хлебопечение, изготовление кисломолочных продуктов, виноделие, получение витаминов, ферментов, пищевых и кормовых белков, органических кислот и многих веществ, применяемых в сельском хозяйстве, промышленности и медицине, основаны на деятельности разнообразных микроорганизмов. Особенно важно использование микроорганизмов в растениеводстве и животноводстве. От них зависит обогащение почвы азотом, борьба с вредителями сельскохозяйственных культур при помощи микробных препаратов, правильное приготовление и хранение кормов, создание кормового белка, антибиотиков и веществ микробного происхождения для кормления животных.

Микроорганизмы оказывают положительное влияние на процессы разложения веществ неприродного происхождения - ксенобиотиков, искусственно синтезированных, попадающих в почвы и водоемы и загрязняющих их.

Наряду с полезными микроорганизмами существует большая группа так называемых болезнетворных, или патогенных, микроорганизмов, вызывающих разнообразные болезни сельскохозяйственных животных, растений, насекомых и человека. В результате их жизнедеятельности возникают эпидемии заразных болезней человека и животных, что сказывается на развитии экономики и производительных сил общества.

Последние научные данные не только существенно расширили представления о почвенных микроорганизмах и процессах, вызываемых ими в окружающей среде, но и позволили создать новые отрасли в промышленности и сельскохозяйственном производстве. Например, открыты антибиотики, выделяемые почвенными микроорганизмами, и показана возможность их использования для лечения человека, животных и растений, а также при хранении сельскохозяйственных продуктов. Обнаружена способность почвенных микроорганизмов образовывать биологически активные вещества: витамины, аминокислоты, стимуляторы роста растений - ростовые вещества и т.д. Найдены пути использования белка микроорганизмов для кормления сельскохозяйственных животных. Выделены микробные препараты, усиливающие поступление в почву азота из воздуха.

Открытие новых методов получения наследственно измененных форм полезных микроорганизмов позволило шире применять микроорганизмы в сельскохозяйственном и промышленном производстве, а также в медицине. Особенно перспективно развитие генной, или генетической, инженерии. Ее достижения обеспечили развитие биотехнологии, появление высокопродуктивных микроорганизмов, синтезирующих белки, ферменты, витамины, антибиотики, ростовые вещества и другие, необходимые для животноводства и растениеводства продукты.

С микроорганизмами человечество соприкасалось всегда, тысячелетия даже не догадываясь об этом. С незапамятных времен люди наблюдали брожение теста, готовили спиртные напитки, сквашивали молоко, делали сыры, переносили различные заболевания, в том числе эпидемические. Свидетельством последнего в библейских книгах служит указание о повальной болезни (вероятно, чуме) с рекомендациями сжигать трупы и делать омовения.

В соответствии с принятой сейчас классификацией микроорганизмы по типу питания разделяют на ряд групп в зависимости от источников потребления энергии и углерода. Так, выделяют фототрофы, пользующиеся энергией солнечного света, и хемотрофы, энергетическим материалом для которых служат разнообразные органические и неорганические вещества.

В зависимости от того, в какой форме микроорганизмы получают из окружающей среды углерод, их подразделяют на две группы: автотрофные ("сами себя питающие"), использующие в качестве единственного источника углерода диоксид углерода, и гетеротрофные ("питающиеся за счет других"), получающие углерод в составе довольно сложных восстановленных органических соединений.

Таким образом, по способу получения энергии и углерода микроорганизмы можно подразделить на фотоавтотрофы, фотогетеротрофы, хемоавтотрофы и хемогетеротрофы. Внутри группы в зависимости от природы окисляемого субстрата, называемого донором электронов (Н-донором), в свою очередь, выделяют органотрофы, потребляющие энергию при разложении органических веществ, и литотрофы (от греч. lithos - камень), получающие энергию за счет окисления неорганических веществ. Поэтому в зависимости от используемого микроорганизмами источника энергии и донора электронов следует различать фотоорганотрофы, фотолитотрофы, хемоорганотрофы и хемолитотрофы. Таким образом, выделяют восемь возможных типов питания.

Каждой группе микроорганизмов присущ определенный тип питания. Ниже приведено описание наиболее распространенных типов питания и краткий перечень микроорганизмов, их осуществляющих.

При фототрофии источник энергии - солнечный свет. Фотолитоавтотрофия - тип питания, характерный для микроорганизмов, использующих энергию света для синтеза веществ клетки из С0 2 и неорганических соединений (Н 2 0, Н 2 S, S°), т.е. осуществляющих фотосинтез. К данной группе относят цианобактерий, пурпурных серных бактерий и зеленых серных бактерий.

Цианобактерий (порядок Суаnobасtеriа1еs), как и зеленые растения, восстанавливают С0 2 до органического вещества фотохимическим путем, используя водород воды:

С0 2 + Н 2 0 свет-› (СH 2 O) * + O 2

Пурпурные серные бактерии (семейство Chromatiaceae) содержат бактериохлорофиллы а и b, обусловливающие способность данных микроорганизмов к фотосинтезу, и различные каротиноидные пигменты.

Для восстановления С0 2 в органическое вещество бактерии данной группы используют водород, входящий в состав Н 2 5. При этом в цитоплазме накапливаются гранулы серы, которая затем окисляется до серной кислоты:

С0 2 + 2Н 2 S свет-› (СH 2 O) + Н 2 + 2S

3CO 2 + 2S + 5H 2 O свет-› 3 (СН 2 0) + 2Н 2 S0 4

Пурпурные серные бактерии обычно бывают облигатными анаэробами.

Зеленые серные бактерии (сем. Chlorobiaceae) содержат зеленые бактериохлорофиллы с, и, в небольшом количестве бактериохлорофилла, а также различные каротиноиды. Как и пурпурные серные бактерии, они строгие анаэробы и способны окислять в процессе фотосинтеза сероводород, сульфиды и сульфиты, накапливая серу, которая в большинстве случаев окисляется до 50^" 2 .

Фотоорганогетеротрофия - тип питания, характерный для микроорганизмов, которые для получения энергии помимо фотосинтеза могут использовать еще и простые органические соединения. К этой группе относятся пурпурные несерные бактерии.

Пурпурные несерные бактерии (семейство Rhjdospirillaceae) содержат бактериохлорофиллы а и b, а также различные каротиноиды. Они не способны окислять сероводород (Н 2 S), накапливать серу и выделять ее в окружающую среду.

При хемотрофии энергетический источник - неорганические и органические соединения. Хемолитоавтотрофия - тип питания, характерный для микроорганизмов, получающих энергию при окислении неорганических соединений, таких, как Н 2 , NH 4 + , N0 2 - , Fе 2+ , Н 2 S, S°, S0з 2 - , S 2 0з 2- , СО и др. Сам процесс окисления называют хемосинтезом. Углерод для построения всех компонентов клеток хемолитоавтотрофы получают из диоксида углерода.

Хемосинтез у микроорганизмов (железобактерий и нитрифицирующих бактерий) был открыт в 1887-1890 гг. известным русским микробиологом С.Н. Виноградским. Хемолитоавтотрофию осуществляют нитрифицирующие бактерии (окисляют аммиак или нитриты), серные бактерии (окисляют сероводород, элементарную серу и некоторые простые неорганические соединения серы), бактерии, окисляющие водород до воды, железобактерии, способные окислять соединения двухвалентного железа, и т.д.

Представление о количестве энергии, получаемой при процессах хемолитоавтотрофии, вызываемых указанными бактериями, дают следующие реакции:

NH3 + 11/2 0 2 - HN0 2 + Н 2 0 + 2,8 10 5 Дж

HN0 2 + 1/2 0 2 - HN0 3 + 0,7 105 Дж

Н 2 S + 1/2 0 2 - S + Н 2 0 + 1,7 10 5 Дж

S + 11/2 0 2 - Н 2 S0 4 + 5,0 10 5 Дж

Н 2 + 1/ 2 0 2 - Н 2 0 + 2,3 10 5 Дж

2FеС0 3 + 1/2 0 2 + ЗН 2 0 - 2Fе (ОН) 3 + 2С0 2 + 1,7 10 5 Дж

Хемоорганогетеротрофия - тип питания, характерный для микроорганизмов, получающих необходимую энергию и углерод из органических соединений. Среди данных микроорганизмов многие аэробные и анаэробные виды, обитающие в почвах и других субстратах.

Практическое использование бактерий в пищевых производствах

Среди бактерий промышленное применение с давних времён имеют молочно-кислые бактерии родов Lactobacillus, Streptococcus при получении кисломолочных продуктов. Кокки имеют круглую, овальную форму диаметром 0,5-1,5 мкм, располагаются попарно или цепочками разной длины. Размеры палочковидных бактерий или объединённые в цепочки.

Молочно-кислый стрептококк Streptococcus lactis имеет попарно соединённые клетки или короткие цепочки, свёртывает молоко через 10-12 ч, некоторые расы образуют антибиотик низин.

C 6 H 12 O 6 → 2CH 3 CHOHCOOH

Сливочный стрептококк S. cremoris образует из сферических клеток длинные цепочки, неактивный кислотообразователь, используют при сквашивании сливок в производстве сметаны.

Ацидофильная палочка Lactobacillus acidophilus образуют длинные цепочки из палочковидных клеток, при сквашивании накапливает до 2,2% молочной кислоты и антибиотические вещества, активные в отношении возбудителей кишечных заболеваний. На основе их готовят медицинские биопрепараты для профилактики и лечения желудочно-кишечных заболеваний с/х животных.

Молочно-кислая палочки L. plantatum имеют сцеплённые попарно или в цепочки клетки. Возбудители брожения при квашении овощей и силосовании кормов. L. brevis сбраживают сахара при квашении капусты, огурцов, образуя кислоты, этанол, CO 2 .

Бесспоровые, неподвижные, грам+ палочки рода Propionibacterium семейства Propionibacteriaceae – возбудители пропионовокислого брожения, вызывают превращение сахара или молочной кислоты и её солей в пропионовую и уксусную кислоту.

3C 6 H 12 O 6 →4CH 3 CH 2 COOH+2CH 3 COOH+2CO 2 +2H 2 O

Пропионово-кислое брожение лежит в основе созревания сычужных сыров. Некоторые виды пропионово-кислых бактерий используют для получения витамина B 12 .

Спорообразующие бактерии семейства Bacilloceae рода Clostridium являются возбудителями масляно-кислого брожения, превращая сахара в масляную кислоту

C 6 H 12 O 6 → CH 3 (CH 2)COOH+2CO 2 +2H 2

Масляная кислота

Места обитания – почва, илистые отложения водоёмов, скопления разлагающихся органических остатков, пищевые продукты.

Эти м/о применяют при производстве масляной кислоты, обладающей неприятным запахом, в отличии от её эфиров:

Метиловый эфир – яблочный запах;

Этиловый – грушевый;

Амиловый – ананасовый.

Их используют как ароматизаторы.

Масляно-кислые бактерии могут вызывать порчу продовольственного сырья и продуктов: вспучивание сыров, прогоркание молока, масла, бомбаж консервов, гибель картофеля и овощей. Образующаяся масляная кислота придаёт острый прогорклый вкус, резкий неприятный запах.

Уксусно-кислые бактерии – бесспоровые грам- палочки с полярными жгутиками, относятся к роду Gluconobacter (Acetomonas) ; образуют из этанола уксусную кислоту

CH 3 CH 2 OH+O 2 →CH 3 COOH+H 2 O

Палочки рода Acetobacter – перитрихи, способны окислять уксусную кислоту до CO 2 и H 2 O.

Уксусно-кислым бактериям присуща изменчивость формы, в неблагоприятных условиях приобретают форму толстых длинных нитей, иногда раздутых. Уксусно-кислые бактерии широко распространены на поверхности растений, их плодах, в квашеных овощах.

Процесс окисления этанола до уксусной кислоты лежит в основе получения уксуса. Самопроизвольное развитие уксусно-кислых бактерий в вине, пиве, квасе приводит к их порче – прокисанию, помутнению. Эти бактерии на поверхности жидкостей образуют сухие морщинистые пленки, островки или кольцо у стенок сосуда.

Распространённый вид порчи – гниение – процесс глубокого разложения белковых веществ микроорганизмами. Наиболее активными возбудителями гнилостных процессов являются бактерии.

Сенная и картофельная палочка Bacillus subtilis - аэробная грам+ спорообразующая палочка. Споры термоустойчивые овальные. Клетки чувствительны к кислой среде и повышенному содержанию NaCl.

Бактерии рода Pseudomonus – аэробные подвижные палочки с полярными жгутиками, не образуют спор, грам-. Некоторые виды синтезируют пигменты, их называют флуоресцирующие псевдомонасы, есть холодоустойчивые, вызывают порчу белковых продуктов в холодильниках. Возбудители бактериозов культурных растений.

Спорообразующие палочки рода Clostridium разлагают белки с образованием большого количества газа NH 3 , H 2 S, кислоты, особенно опасны для консервов. Тяжёлые пищевые отравления вызывает токсин крупных подвижных грам+ палочек Clostridium botulinum . Споры придают вид ракетки. Экзотоксин этих бактерий поражает центральную нервную и сердечно-сосудистую систему (признаки - расстройство зрения, речи, параличи, дыхательная недостаточность).

Большое значение в почвообразовании играют нитрифицирующие, денитрифицирующие, азотфиксирующиебактерии. В основном это неспоробразующие клетк. Их выращивают в искусственных условиях и вносят в виде землеудобрительных препаратов.

Бактерии используют в производстве гидролитических ферментов, аминокислот для пищевых производств.

Среди бактерий особо надо выделить возбудителей пищевых инфекций и пищевых отравлений . Пищевые инфекции вызывают патогенные бактерии, присутствующие в пище, воде. Кишечные инфекции – холера – холерный вирион;

Бактерии играют огромное значение и в биосфере, и в жизни человека. Бактерии принимают участие во многих биологических процессах, особенно в круговороте веществ в природе. Значение для биосферы:

© Гнилостные бактерии разрушают азотсодержащие органические соединœения неживых организмов, превращая их в перегной.

© Минœерализующие бактерии разлагают сложные органические соединœения перегноя до простых неорганических веществ, делая их доступными для растений.

© Многие бактерии могут фиксировать атмосферный азот. Причем, азотобактер , свободноживущий в почве, фиксирует азот независимо от растений, а клубеньковые бактерии проявляют свою активность только в симбиозе с корнями высших растений (преимущественно бобовых), благодаря этим бактериям почва обогащается азотом и повышается урожайность растений.

© Симбиотические бактерии кишечника животных (прежде всœего, травоядных) и человека обеспечивают усвоение клетчатки.

© Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, ĸᴏᴛᴏᴩᴏᴇ должна быть использовано другими организмами. Соединœения, образующиеся в результате деятельности бактерий одного типа, могут служить источником энергии для бактерий другого типа.

© Помимо углекислого газа, при разложении органического вещества в атмосферу попадают и другие газы: H2, H2S, CH2 и др.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, бактерии регулируют газовый состав атмосферы.

© Существенную роль играют бактерии и в процессах почвообразования (разрушение минœералов почвообразующих пород, образование гумуса).

Некоторые вещества, образующиеся в процессе жизнедеятельности бактерий, важны и для человека. Значение их в следующем:

© деятельность бактерий используется для получения молочнокислых продуктов, для квашения капусты, силосования кормов;

© для получения органических кислот, спиртов, ацетона, ферментативных препаратов;

© в настоящее время бактерии активно используются в качестве продуцентов многих биологически активных веществ (антибиотиков, аминокислот, витаминов и др.), используемых в медицинœе, ветеринарии и животноводстве;

© благодаря методам генетической инженерии, с помощью бактерий получают такие необходимые вещества, как человеческий инсулин и интерферон;

© без участия бактерий невозможны процессы, происходящие при сушке табачных листьев, приготовлении кожи для дубления, мацерации волокон льна и пеньки;

© человек использует бактерии и для очистки сточных вод.

Отрицательную роль играют патогенные бактерии, вызывающие заболевания растений, животных и человека.

Многие бактерии вызывают порчу продуктов, выделяя при этом токсичные вещества.

Бактерии, характеристика и значение для человека

Строение

Бактерии — очень мелкие живые организмы. Их можно видеть только под микроскопом с очень сильным увеличением. Все бактерии одноклеточные. Внутреннее строение клетки бактерий не похоже на клетки растений и животных. У них нет ни ядра, ни пластид. Ядерное вещество и пигменты имеются, но в "распыленном" состоянии. Форма разнообразна.

Клетка бактерии одета особой плотной оболочкой – клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи – капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула – не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии.

С помощью жгутиков и ворсинок бактерии передвигаются.

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота – ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

Образование спор

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий. Споры – не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий – это приспособление к выживанию в неблагоприятных условиях. Споры у бактерий служат для перенесения неблагоприятных условий. Они образуются из внутренней части содержимого клетки. При этом вокруг споры формируется новая, более плотная оболочка. Споры могут переносить очень низкие температуры (до — 273 °С) и очень высокие. Споры не погибают при кипячении воды.

Питание

Многие бактерии имеют хлорофилл и другие пигменты. Они осуществляют фотосинтез, подобно растениям (цианобактерии, пурпурные бактерии). Другие бактерии получают энергию из неорганических веществ — серы, соединений железа и других, но источник углерода, как и при фотосинтезе, — углекислый газ.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее. После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес – 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Роль бактерий в природе. Распространение и экология

Бактерии распространены повсеместно: в водоемах, воздухе, почве. В воздухе их меньше всего (но не в местах скопления людей). В водах рек их может быть до 400 000 в 1 см3, а в почве — до 1 000 000 000 в 1 г. Бактерии по-разному относятся к кислороду: для одних он необходим, для других губителен. Для большинства бактерий наиболее благоприятны температуры между +4 и +40 °С. Прямой солнечный свет вызывает гибель многих бактерий.

Встречаясь в огромном количестве (число их видов достигает 2500), бактерии играют исключительно важную роль во многих природных процессах. Вместе с грибами и почвенными беспозвоночными животными они участвуют в процессах разложения растительных остатков (опадающие листья, ветки и т.п.) до перегноя. Деятельность сапрофитных бактерий приводит к образованию минеральных солей, которые усваиваются корнями растений. Клубеньковые бактерии, живущие в тканях корней мотыльковых, а также некоторые свободноживущие бактерии обладают замечательной способностью усваивать атмосферный азот, недоступный для растений. Таким образом, бактерии участвуют в круговороте веществ в природе.

Микрофлора почвы. Количество бактерий в почве чрезвычайно велико – сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв. На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков. Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора – один из факторов образования почв. Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов. Вода – природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается. Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая – 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные. По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха. Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека.
Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками – прекрасная среда для развития микроорганизмов. Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре. Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Значение бактерий в жизни человека

Большое значение имеют процессы брожения; так называют в основном разложение углеводов. Так, в результате брожения молоко превращается в кефир и другие продукты; силосование кормов — тоже брожение. Брожение происходит и в кишечнике человека. Без соответствующих бактерий (например, кишечной палочки) кишечник нормально не может функционировать. Гниение, полезное в природе, крайне нежелательно в быту (например, порча мясных продуктов). Не всегда полезно и брожение (например, скисание молока). Чтобы продукты не портились, их солят, сушат, консервируют, держат в холодильниках. Таким образом снижают деятельность бактерий.

Патогенные бактерии

Споры у бактерий, в отличие от спор грибов, не служат для размножения, а служат приспособлением к перенесению неблагоприятных условий . Каждая бактерия превращается только в одну спору. Когда условия среды становятся подходящими, спора восстанавливается обратно в бактерию с нормальным обменом веществ.

В состоянии споры многие бактерии способны переживать критические температуры (от кипячения до глубокого минуса) и сохранять жизнеспособность сотни лет.

При образовании бактериальных спор объем цитоплазмы уменьшается за счет потери воды. В результате спора обычно меньше самой бактерии и легче нее.

Споры легко переносятся ветром, а значит их образование можно считать не только защитным механизмом, но и способом расселения.

Споры у грибов также служат для расселения, однако здесь основная их функция - размножение, чего нет у прокариот.

Споры могут образовываться по-разному. Чаще всего формируются так называемые эндоспоры. При этом клеточная мембрана впячивается вовнутрь, туда переходит цитоплазма со своим содержимым, а остальная часть бактерии превращается в защитный слой, который с внешней и внутренней стороны заключен в клеточную мембрану.

Всем известно, что бактерии - самые древние жители планеты Земля. Они появились, согласно научным данным, от трех до четырех миллиардов лет назад. И долгое время были единственными и полноправными хозяевами Земли. Можно сказать, что с бактерий все началось. Грубо говоря, родословная всех ведется от них. Так что роль бактерий в жизни человека и природе (ее формировании) весьма значительна.

Ода бактериям

Их строение весьма примитивно - в большинстве своем это одноклеточные организмы, которые, очевидно, мало изменились за такое весьма продолжительное время. Они неприхотливы и могут выживать в экстремальных для других организмов условиях (нагревание до 90 градусов, замораживание, разреженная атмосфера, глубочайший океан). Живут они повсюду - в воде, почве, под землей, в воздухе, внутри других живых организмов. А в одном грамме почвы, например, могут быть обнаружены сотни миллионов бактерий. Поистине почти идеальные создания, существующие рядом с нами. Велика роль бактерий в жизни человека и природе.

Создатели кислорода

Знаете ли вы, что, скорее всего, без существования этих мелких организмов мы бы просто задохнулись? Потому что они (в основном цианобактерии, способные в результате фотосинтеза выделять кислород) в силу своей многочисленности производят огромное количество кислорода, поступающего в атмосферу. Особенно это становится актуальным в связи с вырубкой стратегически важных для всей Земли лесов. А некоторые другие бактерии выделяют углекислый газ, который необходим для дыхания растений. Но роль бактерий в жизни человека и природе не сводится только к этому. Есть еще несколько «видов деятельности», за которые бактериям можно смело давать

Санитары

В природе одна из функций бактерий - санитарная. Они поедают отмершие клетки и организмы, утилизируя ненужное. Получается, что бактерии для всего живого на планете работают своеобразными дворниками. В науке это явление называется сапротрофией.

Круговорот веществ

А еще одна важная роль - участие в в планетарном масштабе. В природе все вещества переходят от организма к организму. Иногда они находятся в атмосфере, иногда - в почве, поддерживая масштабный круговорот. Без бактерий эти составляющие могли бы концентрироваться где-нибудь в одном месте, а великие циклы прервались бы. Подобное происходит, например, с таким веществом, как азот.

Молочнокислая продукция

Молоко - издавна известный людям продукт. Но длительное его хранение стало возможным только в последнее время с изобретением методов консервации и холодильных установок. А со времен зарождения скотоводства человек неосознанно использовал бактерии для сквашивания молока и производства кисломолочных продуктов более длительного хранения, чем само молоко. Так, например, кефир в сухом виде мог храниться месяцами и использоваться в качестве сытной пищи при длительных переходах через пустынные местности. В этом плане неоценима роль бактерий в жизни человека. Ведь если этим организмам «предложить» молоко, они смогут произвести из него массу вкусных и незаменимых продуктов питания. Среди них: йогурт, простокваша, ряженка, сметана, творог, сыр. Кефир, конечно, делается в основном грибками, но и без участия бактерий здесь дело не обходится.

Великие повара

Но «пищеобразующая» роль бактерий в жизни человека не сводится только лишь к кисломолочным продуктам. Есть еще много привычных уже нам продуктов, которые производятся при помощи данных организмов. Это квашеная капуста, соленые (бочковые) огурцы, любимые многими соления и другие продукты.

Лучшие в мире "соседи"

Бактерии - самое многочисленное царство животных организмов в природе. Они живут везде - вокруг нас, на нас, даже - внутри нас! И они являются весьма полезными "соседями" для человека. Так, например, бифидобактерии укрепляют наш иммунитет, повышая сопротивляемость организма многим болезням, помогают пищеварению и делают еще массу нужных вещей. Таким образом, роль бактерий в жизни человека как хороших "соседей" столь же неоценима.

Производство нужных веществ

Ученые смогли так поработать с бактериями, что они в результате стали выделять нужные для человека вещества. Часто этими веществами являются лекарства. Так что лечебная роль бактерий в жизни человека также велика. Некоторые современные лекарства произведены ими или основаны на их действии.

Роль бактерий в промышленности

Бактерии - великие биохимики! В современной промышленности широко используется это их свойство. Так, например, в последние десятилетия производство биогаза в некоторых странах достигает серьезных масштабов.

Отрицательная и положительная роль бактерий

Но эти микроскопические одноклеточные могут быть не только помощниками человека и сосуществовать с ним в полном согласии и мире. Самая большая опасность, которую они таят в себе, - это инфекционные Поселяясь внутри нас, отравляя ткани нашего организма, они, безусловно, являются вредными, иногда смертельными для человека. Среди самых известных опасных болезней, вызываемых бактериями, - чума, холера. Менее опасны ангина и воспаление легких, например. Таким образом, некоторые бактерии могут представлять существенную опасность для человека, если они болезнетворные. Поэтому ученые и врачи всех времен и народов стараются «держать под контролем» эти вредоносные микроорганизмы.

Порча продуктов бактериями

Если мясо протухшее, а суп прокисший, наверняка, это «дело рук» бактерий! Они там заводятся и фактически «съедают» эти продукты до нас. После чего для человека эти блюда уже не представляют пищевой ценности. Остается только выбросить!

Итоги

При ответе на вопрос, какую роль играют бактерии в жизни человека, можно выделить и положительные, и отрицательные моменты. Однако, очевидно, что положительных свойств бактерий гораздо больше, чем негативных. Все дело в разумном контроле человека над этим многочисленным царством.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации