Что такое нервный рефлекс. Рефлексы, виды рефлексов

Классифицируя многообразные рефлексы организма человека и животного, учитывают их различные признаки и проявления. Все рефлексы по происхождению делят на безусловные (врожденные или видовые) и условные (приобретенные в процессе индивидуальной жизни животного или человека, выработанные при определенных условиях).

На основе биологического значения рефлексов для организма их делят:

  • – на защитные, направленные на удаление от раздражителя;
  • пищевые, обеспечивающие добывание, потребление и переваривание пищи;
  • половые, обеспечивающие продолжение рода;
  • ориентировочные, или исследовательские, обеспечивающие поворот тела и движение в сторону нового раздражителя;
  • позно-тонические, или рефлексы положения тела в пространстве ;
  • локомоторные, обеспечивающие перемещение тела в пространстве.

В зависимости от расположения рецепторов рефлекторной дуги различают:

  • экстероцептивные рефлексы, возникающие в ответ на раздражение рецепторов поверхности тела;
  • проприоцептивные рефлексы, возникающие в ответ на раздражение рецепторов мышц, сухожилий и суставов;
  • висцероцептивные рефлексы, возникающие в ответ на раздражение рецепторов внутренних органов.

В зависимости от органов, деятельность которых обеспечивается данным рефлексом, выделяют сердечные, дыхательные, сосудистые и другие рефлексы.

Рефлексы различают также по характеру ответных реакций: секреторные, выражающиеся в выделении секрета, выработанного железой; трофические, связанные с изменением обмена веществ; двигательные, или моторные, характеризующиеся сократительной деятельностью поперечнополосатых и гладких мышц (самая разнообразная группа рефлексов). К двигательным относятся сгибательные, потирательные рефлексы, рефлексы почесывания и другие, возникающие при раздражении кожи; сосательный рефлекс у ребенка; защитный рефлекс при раздражении роговицы глаза – мигательный; зрачковый рефлекс – сужение зрачка при действии света и расширение его в темноте.

Двигательные проприоцептивные рефлексы возникают при раздражении рецепторов мышц и сухожилий. Так, при ударе по сухожилию четырехглавой мышцы бедра в результате ее растяжения возникает рефлекторное разгибание ноги в колене – коленный рефлекс, при ударе по ахиллову сухожилию – ахиллов рефлекс.

Сосудодвигательные рефлексы заключаются в сужении и расширении сосудов.

Висцеромоторными названы двигательные рефлексы, возникающие при раздражении рецепторов гладкой мускулатуры внутренних органов, они обеспечивают движения желудка, кишечника, мочевого пузыря, мочеточников и др.

Все описанные выше рефлексы в зависимости от того, какие отделы центральной нервной системы участвуют в их осуществлении, подразделяются:

  • – на спинальные (осуществляющиеся с участием нейронов спинного мозга);
  • бульбарные (с участием нейронов продолговатого мозга);
  • мезенцефальные (с участием среднего мозга);
  • диэнцефальные (с участием промежуточного мозга);
  • кортикальные (с участием нейронов коры больших полушарий головного мозга).

К спинальным рефлексам относятся сгибательный, возникающий при пощипывании лапки лягушки пинцетом, потирательный – при раздражении кожи лягушки бумажкой, смоченной серной кислотой, и др., а также рефлексы с сухожилий конечностей. Сосательный и мигательный рефлексы осуществляются с участием продолговатого, зрачковый – среднего мозга.

Регуляция любой функции включает участие разных отделов центральной нервной системы, поэтому классификация рефлексов по отделам мозга, участвующим в их осуществлении, относительна. Речь идет лишь о ведущем значении нейронов того или иного отдела центральной нервной системы.

Торможение в ЦНС активный процесс, проявляющийся в подавлении или ослаблении возбуждения. В отличие от возбуждения торможение по нервным волокнам не распространяется.

Явление торможения в нервных центрах было описано И. М. Сеченовым в 1862 г. Значительно позже английский физиолог Шеррингтон выявил, что процессы возбуждения и торможения участвуют в любом рефлекторном акте.

Значение торможения:

  • координационное – процесс торможения обеспечивает упорядоченность или координацию в работе нервных центров, например, чтобы согнуть руку, надо возбудить центр сгибания, посылающий нервные импульсы на бицепс, и затормозить центр разгибания, посылающий нервные импульсы на трицепс;
  • охранительное – при действии сверхсильных раздражителей в нервном центре развивается не возбуждение, а торможение, в результате восстанавливаются запасы АТФ и медиатора;
  • ограничение притока в ЦНС афферентных импульсов второстепенной малозначимой для жизнедеятельности информации.

Различают пресинаптическое и постсинаптическое торможение. При пресинаптическом торможении тормозной эффект реализуется на пресинаптической мембране, этот вид торможения участвует в ограничении притока чувствительных импульсов в мозг. Постсинаптическое торможение осуществляется на постсинаптической мембране. Это основной вид торможения, он развивается в специальных тормозных синапсах с участием тормозных медиаторов, которые подавляют способность нервной клетки генерировать процессы возбуждения.

По нейронной организации торможение подразделяют на поступательное, возвратное, латеральное (боковое) и реципрокное.

  • 1. Поступательное торможение обусловлено включением тормозных нейронов на пути следования возбуждения.
  • 2. Возвратное торможение осуществляется вставочными тормозными нейронами (клетками Реншоу). Импульсы от двигательных нейронов через отходящие от его аксона коллатерали активируют клетку Реншоу, которая, в свою очередь, вызывает торможение разрядов данного нейрона. Это торможение реализуется за счет тормозных синапсов, образованных клеткой Реншоу на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, которая дает возможность подавлять избыточную активность двигательного нейрона.
  • 3. Латеральное торможение – процесс торможения группы нейронов, расположенных рядом с группой возбужденных клеток. Этот вид торможения распространен в сенсорных системах.
  • 4. Реципрокное, или сопряженное, торможение основано на том, что сигналы по одним и тем же афферентным путям обеспечивают возбуждение одной группы нейронов, а через вставочные тормозные клетки вызывают торможение другой группы нейронов. Проявляется, к примеру, на уровне двигательных нейронов спинного мозга, иннервирующих мышцы-антагонисты (сгибатели – разгибатели конечностей). При сгибании руки или ноги центры мышц-разгибателей затормаживаются. Рефлекторный акт возможен только при сопряженном торможении мышц-антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей, и наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты. Нарушение реципрокного торможения лежит в основе двигательных нарушений, сопровождающих многие нарушения двигательного развития в детском возрасте.

В процессе онтогенеза за счет развития тормозных нейронов формируются тормозные механизмы ЦНС. Ранней их формой является постсинаптическое торможение, позднее формируется пресинаптическое. Благодаря формированию тормозных механизмов существенно ограничивается иррадиация возбуждения в ЦНС, свойственная новорожденным, безусловные рефлексы становятся более точными и локализованными.

Координация рефлекторной деятельности – это согласованное взаимодействие нервных центров для обеспечения какого-либо процесса. Координация функций обеспечивает рефлекторные акты, соответствующие воздействиям внешней среды и проявляющиеся со стороны различных систем (мышечной, эндокринной, сердечно-сосудистой). К примеру, при беге рефлекторно работают мышцы сгибателей и разгибателей, повышается артериальное давление, увеличивается просвет сосудов, учащается биение сердца и дыхания. Координация функций определяется характеристикой взаимоотношений между рефлекторными проявлениями со стороны различных систем организма для реализации определенного физиологического акта. Координационные механизмы развиваются на протяжении всего периода детства и достигают своего совершенства к 18-20 годам.

Механизмы координации рефлекторной деятельности:

1. Иррадиация возбуждения. Нейроны разных центров связаны между собой многочисленными вставочными нейронами, поэтому при раздражении рецепторов возбуждение может распространяться не только на нейроны центра данного рефлекса, но и на другие нейроны (явление иррадиации). Чем сильнее и длительнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Процессы торможения ограничивают иррадиацию и способствуют концентрации возбуждения в исходном пункте ЦНС.

Процесс иррадиации играет важную положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Благодаря иррадиации возбуждения между различными нервными центрами возникают новые функциональные связи – условные рефлексы. Чрезмерная иррадиация возбуждения может оказать отрицательное воздействие на состояние и действия организма, нарушая тонкие взаимоотношения между возбужденными и заторможенными нервными центрами и вызывая нарушения координации движений.

  • 2. Облегчение и окклюзия. Облегчение – это превышение эффекта одновременного действия двух слабых раздражителей над суммой их раздельных эффектов. Окклюзия (закупорка) – явление, противоположное облегчению. Окклюзия возникает при действии сильных раздражителей и приводит к снижению силы суммарной ответной реакции.
  • 3. Принцип общего конечного пути. Афферентных нейронов в ЦНС в несколько раз больше, чем эфферентных. В связи с этим разные афферентные влияния поступают к одним и тем же вставочным и эфферентным нейронам, которые являются для них общими конечными путями к рабочим органам. Множество разнообразных раздражений может вызвать действие одних и тех же двигательных нейронов спинного мозга. Например, двигательные нейроны, управляющие дыхательной мускулатурой, помимо обеспечения вдоха, участвуют в таких рефлекторных реакциях, как чихание, кашель и др.

Различают союзные и антагонистические рефлексы (впервые выделены английским физиологом Ч. Шеррингтоном, установившим принцип общего конечного пути). Встречаясь на общих конечных путях, союзные рефлексы взаимно усиливают друг друга, а антагонистические – тормозят. В первом случае в нейронах общего конечного пути нервные импульсы суммируются (например, сгибательный рефлекс усиливается при одновременном раздражении нескольких участков кожи). Во втором случае происходит конкуренция за обладание общим конечным путем, в результате чего осуществляется лишь один рефлекс, а другие затормаживаются. Легкость выполнения освоенных движений объясняется тем, что в их основе лежат упорядоченные во времени синхронизированные потоки импульсов, которые проходят через конечные пути легче, чем импульсы, поступающие в случайном порядке.

Преобладание на конечных путях той или иной рефлекторной реакции обусловлено ее значением для жизнедеятельности организма в данный момент. В таком отборе важную роль играет наличие в ЦНС доминанты (см. ниже). Она обеспечивает протекание главной реакции, подавляя второстепенные.

  • 4. Обратная связь, или вторичная афферентация. Всякий двигательный акт, вызванный афферентным раздражителем, сопровождается возбуждением рецепторов мышц, сухожилий, суставных сумок. Сигналы с проприорецепторов вторично поступают в ЦНС, что позволяет осуществлять коррекцию ее деятельности и саморегуляцию в соответствии с текущими потребностями организма и окружающей обстановкой. Этот важный принцип рефлекторной саморегуляции функций организма называется принципом обратной связи. Кроме того, за счет обратной связи поддерживается тонус нервных центров.
  • 5. Реципрокные (сопряженные) взаимоотношения между нервными центрами. В основе взаимосвязи между нервными центрами лежит процесс индукции – стимуляция (индуцирование) противоположного процесса. Индукция ограничивает распространение (иррадиацию) нервных процессов и обеспечивает концентрацию возбуждения.

Различают одновременную и последовательную индукцию. Сильный процесс возбуждения в нервном центре вызывает (индуцирует) торможение в соседних нервных центрах, а сильный тормозной процесс индуцирует в соседних нервных центрах возбуждение. Так, при возбуждении центров разгибателей мышц тормозятся центры сгибателей и наоборот.

При смене процессов возбуждения и торможения в пределах одного центра говорят о последовательной отрицательной или положительной индукции. Она имеет большое значение при организации ритмической деятельности, обеспечивая попеременное сокращение и расслабление мышц, и лежит в основе многих актов жизнеобеспечения, например дыхания и сердцебиения.

У детей четкие индукционные взаимоотношения между процессами торможения и возбуждения начинают развиваться в возрасте с 3 до 5 лет, так как в этом возрасте возрастает сила и дифференцированность нервных процессов.

6. Доминанта – временное преобладание одного нервного центра или группы центров над другими, определяющее текущую деятельность организма. В 1923 г. А. А. Ухтомский сформулировал принцип доминанты как рабочий принцип деятельности нервных центров.

Доминанту характеризуют:

  • – повышенная возбудимость нервных центров, входящих в доминантый очаг;
  • – стойкость возбуждения центров доминантного очага во времени;
  • – способность усиливать свое возбуждение за счет суммации нервных импульсов, идущих в другие центры ("притягивать" импульсы, идущие к другим центрам, в результате раздражение различных рецепторных полей начинает вызывать рефлекторный ответ, характерный для деятельности данного доминантного центра);
  • – способность доминирующего центра по механизму одновременной индукции вызывать торможение активности других центров.

Доминантный очаг в ЦНС может возникать под влиянием разных факторов, в частности сильной афферентной стимуляции, гормональных воздействий, изменения химизма крови, мотиваций и т.д. ЦНС обладает способностью к перестройке доминантных отношений в соответствии с изменяющимися потребностями организма, и в течение всей жизни человека одна доминанта сменяет другую.

Доминантный очаг у ребенка возникает быстрее и легче, чем у взрослых, но для него характерна низкая устойчивость к внешним раздражителям. С этим в значительной степени связана неустойчивость внимания у детей: новые раздражители легко вызывают новую доминанту, а ориентировочные реакции сами по себе в раннем возрасте являются доминантными.

7. Пластичность нервных центров – функциональная изменчивость и приспособляемость нервных центров, их способность выполнять новые, необычные для них рефлекторные акты. Это особенно ярко проявляется после удаления различных отделов мозга. Если были частично удалены какие-то отделы мозжечка или коры больших полушарий, нарушенная функция со временем может частично или полностью восстановиться.

Термин «рефлекс» был введен французским ученым Р. Декартом в XVII в. Но для объяснения психической деятельности он был применен основоположником русской материалистической физиологии И. М. Сеченовым. Развивая учение И. М. Сеченова. И. П. Павлов экспериментально исследовал особенности функционирования рефлексов и использовал условный рефлекс как метод изучения высшей нервной деятельности.

Все рефлексы были разделены им на две группы:

  • безусловные;
  • условные.

Безусловные рефлексы

Безусловные рефлексы — врожденные реакции организма на жизненно важные раздражители (пищу, опасность и т. п.).

Они не требуют каких-либо условий для своей выработки (например, выделение слюны при виде пиши). Безусловные рефлексы — природный запас готовых, стереотипных реакций организма. Они возникли в результате длительного эволюционного развития данного вида животных. Безусловные рефлексы одинаковы у всех особей одного вида. Они осуществляются с помощью спинного и низших отделов головного мозга. Сложные комплексы безусловных рефлексов проявляются в виде инстинктов.

Рис. 14. Расположение некоторых функциональных зон в коре головного мозга человека: 1 — зона речевого образования (центр Брока), 2 — область двигательного анализатора, 3 — зона анализа устных словесных сигналов (центр Вернике), 4 — область слухового анализатора, 5 — анализ письменных словесных сигналов, 6 — область зрительного анализатора

Условные рефлексы

Но поведение высших животных и характеризуется не только врожденными, т. е. безусловными реакциями, но и такими реакциями, которые приобретены данным организмом в процессе индивидуальной жизнедеятельности, т. е. условными рефлексами . Биологический смысл условного рефлекса состоит в том, что многочисленные внешние раздражители, окружающие животное в естественных условиях и сами по себе не имеющие жизненно важного значения, предшествуя в опыте животного пище или опасности, удовлетворению других биологических потребностей, начинают выступать в роли сигналов , по которым животное ориентирует свое поведение (рис. 15).

Итак, механизм наследственного приспособления — безусловный рефлекс, а механизм индивидуального изменчивого приспособления — условный рефлекс, вырабатываемый при сочетании жизненно значимых явлений с сопутствующими сигналами.

Рис. 15. Схема образования условного рефлекса

  • а — слюноотделение вызывается безусловным раздражителем — пищей;
  • б — возбуждение от пищевого раздражителя связывается с предшествующим индифферентным раздражителем (светом лампочки);
  • в — свет лампочки стал сигналом возможного появления пищи: на него выработался условный рефлекс

Условный рефлекс вырабатывается на основе любой из безусловных реакций. Рефлексы на необычные сигналы, не встречающиеся в естественной обстановке, называются искусственными условными. В лабораторных условиях можно выработать множество условных рефлексов на любой искусственный раздражитель.

С понятием условного рефлекса И. П. Павлов связывал принцип сигнальности высшей нервной деятельности , принцип синтеза внешних воздействий и внутренних состояний.

Открытие Павловым основного механизма высшей нервной деятельности — условного рефлекса — стало одним из революционных завоеваний естествознания, исторически поворотным пунктом в понимании связи физиологического и психического.

С познания динамики образования и изменения условных рефлексов началось открытие сложных механизмов деятельности человеческого мозга, выявление закономерностей высшей нервной деятельности.

(лат. reflexus - повернутый назад, отраженный) - осуществляющаяся через нервную систему ответная реакция организма на те или иные воздействия. Различают Р. безусловные (врожденные) и условные (приобретенные организмом в течение индивидуальной жизни, имеющие свойство исчезать и восстанавливаться). Фр. философ Р.Декарт первым указал на рефлекторный принцип в деятельности мозга. Н.Д.Наумов

Отличное определение

Неполное определение ↓

РЕФЛЕКС

от лат. reflexus – обращение назад; в переносном значении – отражение) – общий принцип регуляции поведения живых систем; двигат. (или секреторный) акт, имеющий приспособит. значение, детерминированный воздействием сигналов на рецепторы и опосредствованный нервными центрами. Понятие Р. было введено Декартом и служило задаче детерминистически объяснить, в рамках механистич. картины мира, поведение организмов на основе общих законов физич. взаимодействия макротел. Декарт отклонил душу как объяснит. принцип двигат. активности животного и описал эту активность как результат строго закономерного ответа "машины-тела" на внешние воздействия. Основываясь на механистически понимаемом принципе Р., Декарт пытался объяснить и нек-рые психич. функции, в частности обучаемость и эмоции. Вся последующая нервно-мышечная физиология находилась под определяющим воздействием учения о Р. Нек-рые последователи этого учения (Дилли, Сваммердам) еще в 17 в. высказывали догадку о рефлекторном характере всего поведения человека. Эту линию завершил в 18 в. Ламетри. Гл. противником детерминистич. взгляда на Р. выступил витализм (Шталь и др.), утверждавший, что ни одна органич. функция не осуществляется автоматически, но все управляется и контролируется чувствующей душой. В 18 в. Витт открыл, что отд. сегмент спинного мозга достаточен для осуществления непроизвольной мышечной реакции, но ее детерминантой он считал особый "чувствительный принцип". Проблеме зависимости движения от ощущения, использованной Виттом для доказательства первичности чувствования по отношению к работе мышцы, материалистич. истолкование дал Гартли, указавший, что ощущение действительно предшествует движению, но само оно обусловлено изменением состояния движущейся материи. Открытие специфич. признаков нервно-мышечной активности побудило натуралистов ввести понятие о "силах", присущих организму и отличающих его от др. природных тел ("мышечная и нервная сила" Галлера, "нервная сила" Унцера и Прохаски), причем трактовка силы являлась материалистической. Существ. вклад в дальнейшее развитие учения о Р. внес Прохаска, предложивший биологич. объяснение Р. как целесообразного акта, регулируемого чувством самосохранения, под влияниям к-рого организм оценивает внешние раздражения. Развитие анатомии нервной системы привело к открытию механизма простейшей рефлекторной дуги (закон Белла – Мажанди). Возникает схема локализации рефлекторных путей, на основе к-рой в 30-х гг. 19 в. созревает классич. учение о Р. как принципе работы спинномозговых центров, в отличие от высших отделов головного мозга. Его обосновали Маршалл Холл и И. Мюллер. Это чисто физиологич. учение исчерпывающе объясняло определ. категорию нервных актов воздействием внешнего раздражителя на специфич. анатомич. структуру. Но представление о Р. как механич. "слепом" движении, предопределенном анатомич. строением организма и не зависящем от того, что происходит во внешней среде, вынуждало прибегнуть к представлению о силе, выбирающей из набора рефлекторных дуг нужные в данных обстоятельствах и синтезирующей их в целостный акт соответственно объекту или ситуации действия. Эта концепция была подвергнута резкой эксперимент.-теоретич. критике с материалистич. позиций Пфлюгером (1853), доказавшим, что низшие позвоночные, лишенные головного мозга, не являются чисто рефлекторными автоматами, а с изменением условий варьируют свое поведение, что наряду с рефлекторной функцией имеется сенсорная. Слабой стороной позиции Пфлюгера было противопоставление Р. сенсорной функции, превращение последней в конечное объяснит. понятие. На новый путь теорию Р. вывел Сеченов. Прежнюю сугубо морфологич. схему Р. он преобразовал в нейродинамическую, выдвинув на передний план соединение центр. процессов в естеств. группы. Регулятором движения было признано чувствование различной степени организации и интеграции – от простейшего ощущения до расчлененного чувственного, а затем и умств. образа, воспроизводящего предметные характеристики среды. Соответственно афферентная фаза взаимодействия организма со средой мыслилась не как механич. контакт, а как приобретение информации, детерминирующей последующий ход процесса. Функция центров трактовалась в широком плане биологич. адаптации. Двигат. активность выступила как фактор, оказывающий обратное влияние на построение поведения – внешнего и внутреннего (принцип обратной связи). В дальнейшем крупный вклад в развитие физиологич. представлений о механизме Р. внес Шеррингтон, изучивший интегративное и адаптивное своеобразие нервных актов. Однако в понимании психич. функций мозга он придерживался дуалистич. взглядов. И. П. Павлов, продолжая линию Сеченова, экспериментально установил различие между безусловным и условным Р. и открыл законы и механизмы рефлекторной работы головного мозга, образующей физиологич. базис психич. деятельности. Последующее изучение сложных приспособит. актов дополнило общую схему Р. рядом новых представлений о механизме саморегуляции (Н. А. Бернштейн, П. К. Анохин и др.). Лит.: Сеченов И. М., Физиология нервной системы, СПБ, 1866; Бессмертный Б. С., Сто лет доктрины Белл-Мажанди, в кн.: Архив биол. наук, т. 49, вып. 1, ?., 1938; Конради Г. П., К истории развития учения о Р., там же, т. 59, вып. 3, М., 1940; Анохин П. К., От Декарта до Павлова, М., 1945; Павлов И. П., Избр. труды, М., 1951; Ярошевский М. Г., История психологии, М., 1966; Грей Уолтер У., Живой мозг, пер. с англ., М., 1966; Eckhard С., Geschichte der Entwicklung der Lehre von den Reflexerscheinungen, "Beitr?ge zur Anatomie und Physiologie", 1881, Bd 9; Fulton J. F., Muscular contraction and the reflex control of movement, L., 1926; Feаring F., Reflex action. A study in the history of physiological psychology, L., 1930; Bastholm E., The history of muscle physiology, Copenhagen, 1950. M. Ярошевский. Ленинград. Современное состояние учения о Р. Успехи физиологии нервной системы и тесный контакт общей нейрофизиологии и физиологии высшей нервной деятельности с биофизикой и кибернетикой чрезвычайно расширили и углубили представление о Р. на физико-химическом, нейронном и системном уровнях. Физико-химич. уровень. Элект-ронный микроскоп показал тонкий механизм химич. передачи возбуждения от нейрона к нейрону путем опорожнения пузырьков медиатора в синаптич. щели (Э. де Робертис, 1959). Вместе с тем природа волны возбуждения в нерве определяется, как и 100 лет тому назад Л. Германом (1868), в виде физич. тока действия, кратковрем. электрич. импульса (Б. Катц, 1961). Но наряду с электрическими учитываются метаболич. компоненты возбуждения, напр. "натриевый насос", генерирующий электрич. ток (А. Ходжкин и А. Хаксли, 1952). Нейронный уровень. Еще Ч. Шеррингтон (1947) связывал нек-рые св-ва простых спинномозговых Р., напр. реципрокность возбуждения и торможения, с гипотетич. схемами соединения нейронов. И. С. Бериташвили (1956) на основании цитоархитектонич. данных высказал ряд предположений о различных формах организации нейронов коры мозга, в частности о воспроизведении образов внешнего мира системой звездчатых клеток зрит. анализатора низших животных. Общую теорию нейронной организации рефлекторных центров предложили У. Мак-Каллок и В. Пите (1943), использовавшие аппарат математич. логики для моделирования функций нервных цепей в жестко-детерминиров. сетях формальных нейронов. Однако мн. св-ва высшей нервной деятельности не укладываются в теорию фиксированных нервных сетей. Исходя из результатов электрофизиологич. и морфологич. изучения взаимосвязи нейронов в высших отделах мозга, развивается гипотеза вероятностно-статистической их организации. По этой гипотезе закономерность протекания рефлекторной реакции обеспечивается не однозначностью пути сигналов по фиксированным межнейронным связям, а вероятностным распределением их потоков по множеств. путям и статистич. способом достижения конечного результата. Случайность во взаимодействии нейронов предполагали Д. Хебб (1949), А. Фессар (1962) и др. исследователи, а У. Грей Уолтер (1962) показал статистич. характер условных Р. Часто нервные сети с фиксированными связями называют детерминистскими, противопоставляя их сетям со случайными связями как индетерминистским. Однако стохастичность не означает индетерминизма, а, наоборот, обеспечивает высшую, наиболее гибкую форму детерминизма, по-видимому, лежащую в основе св-ва исключит. пластичности Р. Системный уровень. Система даже простого безусловного Р., напр. зрачкового, состоит из ряда саморегулирующихся подсистем с линейными и нелинейными операторами (М. Клайнс, 1963). Оценка соответствия действующих раздражителей и "нервной модели стимула" (Е. Н. Соколов, 1959) оказалась важным фактором биологически целесообразной организации Р. С учетом механизмов саморегуляции путем обратных связей, о наличии к-рых писал еще Сеченов (1863), структуру Р. в совр. кибернетич. аспекте стали представлять не в виде открытой рефлекторной дуги, а по типу замкнутого рефлекторного кольца (Н. А. Бернштейн, 1963). В последнее время развернулись дискуссии о содержании понятий сигнальности, подкрепления и временных связей условного Р. Так, П. К. Анохин (1963) рассматривает сигнальность как проявление работы механизма "прогнозирования" событий внешнего мира, а подкрепление – как формирование циклич. структур контроля результатов действия. Э. А. Асратян (1963) подчеркивает качеств. отличия связей условного Р. от кратковрем. реакций типа проторения и доминанты. Лит.: Бериташвили И. С., Морфологич. и физиологич. основания временных связей в коре больших полушарий, "Тр. Ин-та физиологии им. И. С. Бериташвили", 1956, т. 10; Мак-Каллок У. С. и Питтс В., Логич. исчисление идей, относящихся к нервной активности, [пер. с англ.], в сб.: Автоматы, М., 1956; Соколов Е. Н., Нервная модель стимула, "Докл. АПН РСФСР", 1959, No 4; Катц Б., Природа нервного импульса, в сб.: Совр. проблемы биофизики, т. 2, М., 1961; Хартлайн X., Рецепторные механизмы и интеграция сенсорной информации в сетчатке глаза, там же; Уолтер Г. У., Статистич. подход к теории условных Р., в кн.: Электроэнцефалографич. исследование высшей нервной деятельности, М., 1962; Фессар?., Анализ замыкания временных связей на уровне нейронов, там же; Смирнов Г. Д., Нейроны и функцион. организация нервного центра, в сб.: Гагрские беседы, т. 4, Тб., 1963; Филос. вопр. физиологии высшей нервной деятельности и психологии, М., 1963 (см. ст. П. К. Анохина, Э. А. Асратяна и Н. А. Бернштейна); Коган А. Б., Вероятностно-статистич. принцип нейронной организации функциональных систем мозга, "ДАН СССР", 1964, т. 154, No 5; Sherrington Ch. S., The integrative action of the nervous system, , 1947; Hodgkin A. L., Huxley A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, "J. physiol.", 1952, v. 117, No 4; Hebb D. O., The organisation of behavior, N. Y.–L., ; Robertis Ed. de, Submicroscopic morphology of the synapse, "Intern. Rev. Cytol.", 1959, v. 8, p. 61–96. А. Коган. Ростов н/Д.

Понятие рефлекса является очень важным в физиологии. С помощью этого понятия объясняется автоматизированная работа организма по быстрому приспособлению к изменениям в окружающей среде.

С помощью рефлексов нервная система согласует деятельность организма с сигналами, приходящими из окружающей внешней и внутренней среды.

Рефлекс (отражение) - это основной принцип и способ работы нервной системы. Более общее понятие - реактивность . Эти понятия подразумевают то, что причина поведенческой деятельности организма лежит не в психике, а вне психики , вне нервной системы, и запускается внешними по отношению к психике и к нервной системы сигналами - раздражителями. Также подразумевается детерминизм , т.е. предопределённость поведения за счёт причинно-следственной связи между раздражителем и ответной реакцией организма на него.

Понятия "рефлекс" и "рефлекторная дуга" относятся к в области физиологии нервной системы и в них обязательно надо разобраться до уровня полного понимания и ясности для того чтобы понимать многие другие темы и разделы физиологии.

Определение понятия

Простое определение понятия "рефлекс"

Рефлекс - это ответная реакция . Можно дать и такое определение рефлексу, но после этого необходимо назвать 6 важных критериев (признаков) рефлекса, которы его характеризуют. Они указаны в ниже, в полном определении понятия рефлекса.

Рефлекс – это стереотипная автоматизированная приспособительная ответная реакция на стимул (раздражитель).

Рефлекс в общем широком смысле - это вторичное явление, вызываемое другим явлением (первичным), т.е. отражение , следствие по отношению к чему-то первоначальному. В физиологии рефлекс - это ответная реакция организма на поступающий сигнал, источник которого находится за пределами психики, когда запускающий сигнал (раздражитель) является первичным явлением, а реакция на него - вторичной, ответной.

Полное определение понятия "рефлекс"

Физиологическое определение понятия "рефлекторная дуга"

Рефлекторная дуга - это схематический путь движения возбуждения от рецептора до эффектора.

Можно сказать, что это путь нервного возбуждения от места его рождения к месту применения, а также путь от информационного входа до информационного выхода из организма. Вот что такое рефлекторная дуга с точки зрения физиологии.

Анатомическое определение понятия "рефлекторная дуга"

Рефлекторная дуга - это совокупность нервных структур, участвующих в осуществлении рефлекторного акта.

Оба этих определения рефлекторной дуги являются верными, но чаще почему-то используется анатомическое определение, хотя понятие рефлекторной дуги относится к физиологии, а не к анатомии.

Помните, что схема любой рефлекторной дуги должна начинаться с раздражителя , хотя сам раздражитель не входит в состав рефлекторной дуги. Заканчивается рефлекторная дуга органом-эффектором , который и даёт ответную реакцию.

Раздражитель - это такой физический фактор, который при воздействии на адекватные для него сенсорные рецепторы порождает в них нервное возбуждение.

Раздражитель запускает в рецепторах трансдукцию, в результате которой раздражение преобразуется в возбуждение.

Электрический ток является универсальным раздражителем, поскольку способен порождать возбуждение не только в сенсорных рецепторах, но также в нейронах, нервных волокнах, железах и мышцах.

Варианты результата действие раздражителя на организм

1. Запуск безусловного рефлекса.

2. Запуск условного рефлекса.

3. Запуск ориентировочного рефлекса.

4. Запуск доминанты.

5. Запуск функциональной системы.

6. Запуск эмоции.

7. Запуск создания нервной модели (в частности, сенсорного образа), процесса научения/запоминания.

8. Запуск воспоминания.

Эффекторов не так уж много видов.

Виды эффекторо в:

1) поперечно-полосатые мышцы тела (быстрые белые и медленные красные),

2) гладкие мышцы сосудов и внутренних органов,

3) железы внешней секреции (например, слюнные),

4) железы внутренней секреции (например, надпочечники).

Соответственно, ответные реакции будут результатом деятельности этих эффекторов, т.е. сокращение или расслабление мышц, приводящие к движениям тела или внутренних органов и сосудов, или выделение секрета железами.

Понятие временной нервной связи

"Временная связь - это совокупность биохимических, нейрофизиологических и, возможно, ультраструктурных изменений мозга, возникающих в процессе сочетания условного и безусловного раздражителей и формирующих строго определённые взаимоотношения между структурными образованиями, лежащими в основе различных мозговых механизмов. Механизм памяти фиксирует эти взаимоотношения, обеспечивая их удержание и воспроизведение". (Хананашвили М.М., 1972).

Между тем, смысл этого мудрёного определения сводится к следующему:

Временная нервная связь - это гибкая часть увловно рефлекторной дуги, формирующаяся при выработке условного рефлекса для соединения двух безусловно рефлекторных дуг. Она обеспечивает проведение возбуждения между нервными центрами двух разных безусловных рефлексов. Изначально один из этих двух безусловных рефлексов запускается слабым раздражителем ("условным"), а второй - сильным ("безусловным" или "подкреплением"), но когда уже выработан условный рефлекс, то слабый условный раздражитель получает возможность запускать "чужую" безусловную реакцию за счёт перехода возбуждения с его нервного центра на нервный центр сильного безусловного раздражителя.

Виды рефлекторных дуг:

1. Элементарная (простая) рефлекторная дуга безусловного рефлекса. © 2015-2016 Сазонов В.Ф. © 2015-2016 kineziolog.bodhy.ru..

Эта рефлекторная дуга - самая простая, она содержит всего 5 элементов. Хотя на рисунке показано больше элементов, но из них мы выделяем 5 основных и необходимых: рецептор (2) - афферентный ("приносящий") нейрон (4) - вставочный нейрон (6) - эфферентный ("выносящий") нейрон (7, 8) - эффектор (13).

Важно понимать значение каждого элемента дуги. Рецептор : преобразует раздражение в нервное возбуждение. Афферентный нейрон : доставляет сенсорное возбуждение в центральную нервную систему, к вставочному нейрону. Вставочный нейрон : преобразует пришедшее возбуждение и направляет его по нужному пути. Так, например, вставочный нейрон может получать сенсорное ("сигнальное") возбуждение, а дальше передавать уже другое возбуждение - двигательное ("управляющее"). Эфферентный нейрон : доставляет управляющее возбуждение на орган-эффектор. Например, двигательное возбуждение - на мышцу. Эффектор осуществляет ответную реакцию.

На рисунке справа представлена элементарная рефлекторная дуга на примере коленного рефлекса, которая настолько проста, что в ней даже отсутствуют вставочные нейроны.

Обратите внимание на то, что на мотонейроне, которым заканчивается рефлекторная дуга, сходятся множество окончаний нейронов, разположенных на разных уровнях нервной системы и стремящихся управлять деятельностью этого мотонейрона.

4. Двухсторонняя дуга условного рефлекса Э.А. Асратяна. Она показывает, что при выработке условного рефлекса формируются встречные временные связи и оба использованных раздражителя являются одновременно как условными, так и безусловными.

На рисунке справа дана анимированная схема двойной условнорефлекторной дуги. Она состоит фактически из двух безусловнорефлекторных дуг: левая - мигательный безусловный рефлекс на раздражение глаза воздушным потоком (эффектор - сокращающаяся мышца века), правая - слюноотделительный безусловный рейлекс на раздражение языка кислотой (эффектор - слюнная железа, секретирующая слюну). За счёт образования в коре больших полушарий головного мозга временных условнорефлекторных связей эффекторы начинают давать ответные реакции на неадекватные для них в норме раздражители: мигание в ответ на кислоту во рту и слюноотделение в ответ на дуновение воздухом в глаз.

5. Рефлекторное кольцо Н.А. Бернштейна. Эта схема показывает, как рефлекторно корректируется движение в зависимости от достижения поставленной цели.

6. Функциональная система для обеспечения целесообразного поведения П.К. Анохина. Эта схема показывает управление сложными поведенческими актами, направленными на достижение полезного запланированного результата. Главные признаки этой модели: акцептор результата действия и обратные связи между элементами.

7. Двойная дуга условного слюноотделительного рефлекса. Эта схема показывает, что любой условный рефлекс должен состоять из двух рефлекторных дуг, образованных двумя разными безусловными рефлексами, т.к. каждый раздражитель (условный и безусловный) порождает свой собственный безусловный рефлекс.

Пример протокола опыта по выработке условного зрачкового рефлекса на звук на лабораторном занятии

№ опыта УР (условный раздражитель), неадекватный для зрачка
УОР (условная ответная реакция) зрачка
БР (безусловный раздражитель), адекватный для зрачка
БОР (безусловная ответная реакция) зрачка
Примечание
Стимулы и реакции
Звук (стук или звон колокольчика)
Расширение/ Сужение зрачка Темнота/ Свет (затемнение одного глаза)
Расширение/ Сужение зрачка Безусловную ответную реакцию на звук не регистрируем, даже если она есть. Оцениваем только реакцию на затемнение.
Серия 1. Получение безусловной ответной реакции на темноту в виде расширения зрачка
1. (-) (-) (+) (+) Наблюдается только БОР
(-) (-) (+) (+) Наблюдается только БОР
10. (-) (-) (+) (+) Наблюдается только БОР
Вывод : Постоянно проявляется безусловная ответная реакция зрачка на адекватный для него БР (темноту).
Серия 2. Получение индифферентного (безразличного) действия неадекватного условного раздражителя (звука) на зрачок
1. (+) (+) ? (-) (+) ?
2. (+) (+) (-) (+) ООР (ориентировочная ответная реакция)
(+) (+) (-) (+) ООР (ориентировочная ответная реакция)
10. (+) (-) (-) (-) Раздражитель уже индифферентный
Вывод : После нескольких повторов неадекватного для зрачка раздражения исчезает ООР и раздражитель становится индифферентным (безразличным).
Серия 3. Выработка условного рефлекса (условной ответной реакции)
1. (+) (-) (+) (+) Наблюдается только БОР
(+) (-) (+) (+) Наблюдается только БОР
15. (+) (+) (+) (+) Появляется УОР
16. (+) (+) (-) (-) УОР (условная ответная реакция) проявляется даже при отсутствии БОР (безусловной ответной реакции)
Вывод : После многократного сочетания условного и безусловного раздражителей появляется условная ответная реакция зрачка на ранее индифферентный для него условный раздражитель (звук).
Серия 4. Получение торможения условного рефлекса (угашение)
1. (+) (+) (-) (-)
(+) (+) (-) (-) Наблюдается УОР (условная ответная реакция)
6. (+) (-) (-) (-)
Вывод : После многократных условных раздражений без подкрепления безусловными раздражителями исчезает УОР, т.е. условный рефлекс тормозится.
Серия 5. Вторичная выработка (восстановление) заторможенного условного рефлекса
1. (+) (-) (+) (+) Наблюдается только БОР
(+) (-) (+) (+) Наблюдается только БОР
5. (+) (+) (+) (+) Появляется УОР
6. (+) (+) (-) (-) УОР (условная реакция) проявляется при отсутствии БР (безусловного раздражителя) и вызванной им БОР (безусловной ответной реакции)
Вывод : Вторичная выработка (восстановление) условных рефлексов происходит быстрее, чем первоначальная выработка.
Серия 6. Получение вторичного торможения условных рефлексов (повторное угашение)
1. (+) (+) (-) (-) Наблюдается УОР (условная ответная реакция)
(+) (+) (-) (-) Наблюдается УОР (условная ответная реакция)
4. (+) (-) (-) (-) Исчезновение условной ответной реакции
Вывод: Вторичное торможение условного рефлекса вырабатывается быстрее, чем его первичное торможение.
Обозначения: (-) - отсутствие раздражения или реакции, (+) - наличие раздражения или реакции

Pефлекс (от лат. "рефлексус" - отражение) - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции или прекращении секреции желез, в сужении или расширении сосудов и т. п.

Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям. У позвоночных животных значение рефлекторной функции центральной нервной системы настолько велико, что даже частичное выпадение ее (при оперативном удалении отдельных участков нервной системы или при заболеваниях ее) часто ведет к глубокой инвалидности и невозможности осуществлять необходимые жизненные функции без постоянного тщательного ухода.

Значение рефлекторной деятельности центральной нервной системы в полной мере было раскрыто классическими трудами И. М. Сеченова и И. П. Павлова. И. М. Сеченов еще в 1862 г. в своем составившем эпоху труде "Рефлексы головного мозга" утверждал: "Все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы".

Виды рефлексов

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы .

Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни.

Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга.

Безусловные и условные рефлексы можно классифицировать на различные группы по ряду признаков.

NB! Эта классификация приемлема к более или менее простым рефлексам, направленным на объединение функций внутри организма. При сложных же рефлексах, в которых участвуют нейроны, находящиеся в высших отделах центральной нервной системы, как правило, в осуществление рефлекторной реакции вовлекаются различные исполнительные органы, в результетате чего происходит изменение соотношения организма с внешней средой, изменение поведения организма.

Примеры некоторых относительно простых рефлексов, наиболее часто исследуемых в условиях лабораторного эксперимента на животном или в клинике при заболеваниях нервной системы человека [показать] .

  1. Cпинальные рефлексы
    • сгибательный рефлекс - укол или нанесение слабого раствора кислоты на лапку лягушки вызывает рефлекторное сокращение мышц этой лапки - последня сгбается и устраняется от раздражителя
    • рефлекс натирания - прикладывание к коже боковой поверхности тела лягушки кусочка фильтровальной бумаги, смоченного кислотой, влечет за собой сокращения приводящих мышц лапки той же стороны, потирание раздраженного места и сбрасывание бумаги
    • рефлекс почесывания - потирание кожи на боку у собаки влечет за собой притягивание задней лапы со стороны раздражения к боковой поверхности туловища и ритмические сгибательные движения почесывания
    • коленный рефлекс - при легком, коротком ударе по сухожилию четырехглавой мышцы бедра под коленной чашечкой происходит резкое разгибание ноги в колене
    • ахиллов рефлекс - при ударе по ахиллову сухожилию происходит резкое сокращение икроножной мышцы
    • подошвенный рефлекс - раздражение кожи подошвенной части ноги взрослого человека вызывает рефлекторное сгибание стопы и пальцев
  2. Бульбарные рефлексы
    • сосательный рефлекс - прикосновение к губам грудного младенца ведет к появлению ритмических сосательных движений
    • корнеальный рефлекс - прикосновение к роговице глаза ведет к смыканию век
  3. Мезенцефальные рефлексы
    • зрачковый рефлекс - освещение ярким светом глаза вызывает сужение зрачка

Как уже отмечалось выше, подобная классификация рефлексов условна: если какой-либо рефлекс может быть получен при сохранности того или иного отдела центральной нервной системы и разрушении вышележащих отделов, то это не означает, что данный рефлекс осуществляется в нормальном организме только при участии этого отдела: в каждом рефлексе участвуют в той или иной мере все отделы центральной нервной системы.

Любой рефлекс в организме осуществляется при помощи рефлекторной дуги.

Это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)

  • соматической нервной системы, иннервирующие скелетную иускулатуру
  • вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.

Рефлекторная дуга состоит из пяти отделов:

  1. рецепторов , воспринимающих раздражение и отвечающих на него возбуждением. Рецепторами могут быть окончания длинных отростков центростремительных нервов или различной формы микроскопические тельца из эпителиальных клеток, на которых оканчиваются отростки нейронов. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).
  2. чувствительного (центростремительного, афферентного) нервного волокна , передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.
  3. нервного центра , где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре происходит синаптическое соединение чувствительного и двигательного нейрона.
  4. двигательного (центробежного, эфферентного) нервного волокна , несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.
  5. эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

Простейшую рефлекторную дугу можно схематически представить как образованную всего двумя нейронами: рецепторным и эффекторным, между которыми имеется один синапс. Такую рефлекторную дугу называют двунейронной и моносинаптической. Моносинаптические рефлекторные дуги встречаются весьма редко. Примером их может служить дуга миотатического рефлекса.

В большинстве случаев рефлекторные дуги включают не два, а большее число нейронов: рецепторный, один или несколько вставочных и эффекторный. Такие рефлекторные дуги называют многонейронными и полисинаптическими. Примером полисинаптической рефлекторной дуги является рефлекс отдергивания конечности в ответ на болевое раздражение.

Рефлекторная дуга соматической нервной системы на пути от ЦНС к скелетной мышце нигде не прерывается в отличии от рефлекторной дуги вегетативной нервной системы, которая на пути от ЦНС к иннервируемому органу обязательно прерывается с образованием синапса - вегетативного ганглия.

Вегетативные ганглии, в зависимости от локализации, могут быть разделены на три группы:

  1. позвоночные (вертебральные) ганглии - относятся к симпатической нервной системе. Они расположены по обе стороны позвоночника, образуя два пограничных ствола (их еще называют симпатическими цепочками)
  2. предпозвоночные (превертебральные) ганглии располагаются на большем расстояни от позвоночника, вместе с тем они находятся в некотором отдалении и от иннервируемых ими органов. К числу превертебральных ганглиев относят ресничный узел, верхний и средний шейный симпатические узлы, солнечное сплетение, верхний и нижний брыжеечные узлы.
  3. внутриорганные ганглии расположены во внутренних органах: в мышечных стенках сердца, бронхов, средней и нижней трети пищевода, желудка, кишечника, желчного пузыря, мочевого пузыря, а также в железах внешней и внутренней секреции. На клетках этих ганглий прерываются парасимпатические волокна.

Такое различие соматической и вегетативной рефлекторной дуги обусловлено анатомическим строением нервных волокон, составляющих нейронную цепь, и скоростью проведения по ним нервного импульса.

Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.

Схема реализации рефлекса

В ответ на раздражение рецептора нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. В основе возбуждения лежит изменение концентрации анионов и катионов по обе стороны мембраны отростков нервной клетки, что приводит к изменению электрического потенциала на мембране клетки.

В двухнейронной рефлекторной дуге (первый нейрон - клетка спинно-мозгового ганглия, второй нейрон - двигательный нейрон [мотонейрон] переднего рога спинного мозга) дендрит клетки спинно-мозгового ганглия имеет значительную длину, он следует на периферию в составе чувствительных волокон нервных стволов. Заканчивается дендрит особым приспособлением для восприятия раздражения - рецептором.

Возбуждение от рецептора по нервному волокну центростремительно (центрипетально) передается в спинно-мозговой ганглий. Аксон нейрона спинномозгового ганглия входит в состав заднего (чувствительного) корешка; это волокно доходит до мотонейрона переднего рога и с помощью синапса, в котором передача сигнала происходит при помощи химического вещества - медиатора, устанавливает контакт с телом мотонейрона или с одним из ее дендритов. Аксон этого мотонейрона входит в состав переднего (двигательного) корешка, по которому центробежно (центрифугально) сигнал поступает к исполнительному органу, где соответствующий двигательный нерв заканчивается двигательной бляшкой в мышце. В результате происходит сокращение мышцы.

Возбуждение проводится по нервным волокнам со скоростью от 0,5 до 100 м/с, изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы.

Оба процесса - возбуждение и торможение - взаимосвязаны, что обеспечивает согласованную деятельность органов и всего организма в целом. Например, во время ходьбы чередуется сокращение мышц сгибателей и разгибателей: при возбуждении центра сгибания импульсы следуют к мышцам-сгибателям, одновременно с этим центр разгибания тормозится и не посылает импульсы к мышцам-разгибателям, вследствие чего последние расслабляются, и наоборот.

Взаимосвязь, определяющая процессы возбуждения и торможения, т.е. саморегуляции функций организма, осуществляется при помощи прямых и обратных связей между центральной нервной системой и исполнительным органом. Обратная связь ("обратная афферентация" по П.К.Анохину), т.е. связь между исполнительным органом и центральной нервной системой, подразумевает передачу сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент.

Согласно обратной афферентации, после получения исполнительным органом эфферентного импульса и выполнения рабочего эффекта, исполнительный орган сигнализирует центральной нервной системе о выполнении приказа на периферии.

Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозгу происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т.е. пока рука не возьмет предмет. Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму "обратной афферентации", который имеет характер замкнутого круга.

Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий (В.Д. Моисеев, 1960). Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи ("обратной афферентации") дает новое представление о замкнутой кольцевой цепи рефлексов, о круговой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг - таково новейшее представление о строении и функции нервной системы.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации