Интересный робот-манипулятор на Arduino. Промышленный робот-манипулятор: все могу и все умею Добавление подсветки на манипулятор

Муниципальное бюджетное учреждение

дополнительного образования «Станция юных техников»

города Каменск Шахтинский

Муниципальный этап областного слета-конкурса

«Юные конструкторы Дона – третьему тысячелетию»

Раздел «Робототехника»

« Рука-манипулятор на Arduino»

педагог дополнительного образования

МБУ ДО «СЮТ»

    Введение 3

    Исследование и анализ 4

    Этапы изготовления узлов и сборка манипулятора 6

    1. Материалы и инструменты 6

      Механическая начинка манипулятора 7

      Электронная начинка манипулятора 9

    Заключение 11

    Источники информации 12

    Приложение 13

    Введение

Робот – манипулятор это трехмерная машина, имеющая три измерения, соответствующие пространству живого существа. В широком понимании манипулятор может быть определен как техническая система, способная замещать человека или помогать ему в выполнении различных задач.

В настоящее время развитие робототехники не идет, а бежит, обгоняя время. Только за первые 10 лет XXI века было изобретено и внедрено более 1 млн. роботов. Но самое интересное, что разработками в этой области могут заниматься не только коллективы больших корпораций, группы ученых и инженеров профессионалов, но и обычные школьники по всему миру.

Для изучения робототехники в школе разработано несколько комплексов. Наиболее известные из них – это:

    Robotis Bioloid;

    LEGO Mindstorms;

  • Arduino .

Большой интерес у роботостроителей представляют конструкторы Arduino. Платы Arduino - это радио - конструктор, весьма простой, но достаточно функциональный для очень быстрого программирования на языке Виринг (фактически С++) и воплощения в жизнь технических идей.

Но как показывает практика, все большее практическое значение приобретают именно работы молодых специалистов нового поколения.

Обучение детей программированию будет всегда актуальна, так как бурное развитие робототехники связано, прежде всего, с развитием информационных технологий и средств коммуникации.

Цель проекта – создание обучающего радио - конструктора на базе руки – манипулятора, для обучения детей программированию в среде Arduino в игровой форме. Дать возможность, чтобы как можно больше детей могли познакомиться с конструкторской деятельностью в робототехнике.

Задачи проекта:

    разработать и построить обучающую руку – манипулятор с минимальными затратами средств, не уступающую зарубежным аналогам;

    в качестве механизмов манипулятора использовать сервоприводы;

    управление механизмами манипулятора осуществить с помощью радио – конструктора Arduino UNO R 3;

    разработать программу в среде программирования Arduino для пропорционального управления сервоприводами.

Для выполнения поставленной цели и задач нашего проекта необходимо изучить виды существующих манипуляторов, техническую литературу по этой теме и аппаратно - вычислительную платформу Arduino.

    Исследование и анализ

Исследование.

Промышленный манипулятор - предназначенный для выполнения двигательных и управляющих функций в производственном процессе, т. е. автоматическое устройство, состоящее из манипулятора и перепрограммируемого устройства управления, которое формирует управляющие воздействия, задающие требуемые движения исполнительных органов манипулятора. Применяется для перемещения предметов производства и выполнения различных технологических операций.

О
бучающий конструктор - манипулятор снабжен роботизированной рукой, которая сжимается и разжимается. С его помощью можно играть в шахматы, управляя дистанционно. Также можно с помощью робо - руки раздавать визитки. Движение включают в себя: запястье 120°, локоть 300°, базовое вращения 270°, базовые движения 180°. Игрушка очень хорошая и полезная, но стоимость его составляет порядка 17200 рублей.

Благодаря проекту «uArm», каждый желающий может собрать своего настольного мини - робота. «uArm» - это 4-x осевой манипулятор, миниатюрная версия промышленного робота «ABB PalletPack IRB460» Манипулятор оснащен микропроцессором Atmel и набором сервомоторов, общая стоимость необходимых деталей - 12959 рублей. Проект uArm требует хотя бы начальных навыков программирования и опыта конструирования лего. Мини - робот можно запрограммировать на множество функций: от игры на музыкальном инструменте, до загрузки какой - то сложной программы. В настоящее время ведется разработка приложений для iOS и Android, что позволит управлять «uArm» со смартфона.

Манипуляторы «uArm»

Большинство существующих манипуляторов предполагают расположение двигателей непосредственно в суставах. Это проще конструктивно, но выходит, что двигатели должны поднимать не только полезную нагрузку, но и другие двигатели.

Анализ.

За основу взяли, манипулятор, представленный на сайте Kickstarter, который назывался «uArm». Преимущество этой конструкции в том, что площадка для размещения захвата всегда расположена параллельно рабочей поверхности. Тяжелые двигатели расположены у основания, усилия передаются через тяги. В итоге манипулятор имеет три сервопривода (три степени свободы), которые позволяют ему перемещать инструмент по всем трем осям на 90 градусов.

В подвижных частях манипулятора решили установить подшипники. Такая конструкция манипулятора имеет массу преимуществ перед многими моделями, которые сейчас есть в продаже: Всего в манипуляторе использовано 11 подшипников: 10 штук на вал 3мм и один на вал 30мм.

Характеристики руки манипулятора:

Высота: 300мм.

Рабочая зона (при полностью вытянутом манипуляторе): от 140мм до 300мм вокруг основания

Максимальная грузоподъемность на вытянутой руке: 200г

Потребляемый ток, не более: 1А

Простота сборки. Очень много внимания уделили тому, чтобы была такая последовательность сборки манипулятора, при которой все детали прикручивать предельно удобно. Особенно сложно было сделать это для узлов мощных сервоприводов в основании.

Управление реализуется с помощью переменных резисторов, пропорциональное управление. Можно сконструировать управление типа пантограф, как у ядерщиков и у героя в большом роботе из фильма «Аватара», может управляться и мышкой, а по примерам кода можно составить свои алгоритмы движения.

Открытость проекта. Любой желающий может сделать свои инструменты (присоску или зажим для карандаша) и загрузить в контроллер необходимую для выполнения поставленной задачи программу (скетч).

    Этапы изготовления узлов и сборка манипулятора

      Материалы и инструменты

Для изготовления руки - манипулятора использовали композитную панель, толщиной 3мм и 5мм. Это материал, который состоит из двух алюминиевых листов, толщиной 0,21 мм соединенных термопластичной прослойкой из полимера, обладает хорошей жесткостью, легкий и хорошо обрабатывается. Скаченные фотографии манипулятора в интернете обрабатывались компьютерной программой Inkscape (векторный графический редактор). В программе AutoCAD (трёхмерная система автоматизированного проектирования и черчения) чертились чертежи руки - манипулятора.

Готовые детали для манипулятора.

Готовые детали основания манипулятора.

      Механическая начинка манипулятора

Для основания манипулятора использовали сервоприводы MG-995. Это цифровые сервоприводы с металлическими шестеренками и шарикоподшипниками, они обеспечивают усилие 4,8кг/см, точную отработку позиции и приемлемую скорость. Весит один сервопривод 55,0 граммов при размерах 40,7 х 19,7 х 42,9мм, напряжение питания от 4,8 до 7,2 вольт.

Для захвата и поворота кисти использовали сервоприводы MG-90S. Это тоже цифровые сервоприводы с металлическими шестеренками и шарикоподшипник на выходном валу, они обеспечивают усилие 1,8кг/см и точную отработку позиции. Весит один сервопривод 13.4 грамма при размерах 22,8 х 12,2 х 28,5мм, напряжение питания от 4,8 до 6,0 вольт.


Сервопривод MG-995 Сервопривод MG90S

Подшипник размером 30х55х13 используется для облегчения поворота основания руки – манипулятора с грузом.


Установка подшипника. Поворотное устройство в сборе.

Основание руки – манипулятора в сборе.


Детали для сборки захвата. Захват в сборе.

      Электронная начинка манипулятора

Есть такой открытый проект, который называется Arduino. Основа этого проекта – базовый аппаратный модуль и программа, в которой можно написать код для контроллера на специализированном языке, и которая позволяет этот модуль подключить и запрограммировать.

Для работы с манипулятором использовали плату Arduino UNO R 3 и совместимую плату расширения для подключения сервоприводов. На нем установлен стабилизатор 5 вольт, для питания сервоприводов, PLS-контакты для подключения сервоприводов и разъем для подключения переменных резисторов. Питание осуществляется от блока 9В, 3А.

Плата контроллера Arduino UNO R 3.

Принципиальная схема расширения для платы контроллера Arduino UNO R 3 разрабатывалась с учетом поставленных задач.

Принципиальная схема платы расширения для контроллера.

Плата расширения для контроллера.

Подключаем плату Arduino UNO R 3 с помощью кабеля USB A-B к компьютеру, устанавливаем необходимые настройки в среде программирования, составляем программу (скетч) для работы сервоприводов используя библиотеки Arduino. Компилируем (проверяем) скетч, затем загружаем в контроллер. С подробной информацией о работе в среде Arduino можно ознакомиться на сайте http://edurobots.ru/category/uroki/ (Arduino для начинающих. Уроки).

Окно программы со скетчем.

    Заключение

Данная модель манипулятора, отличается низкой себестоимостью, от таких как простой конструктор «Уткоробот» который выполняет 2 движения и стоит 1102 рублей, или Лего - конструктор «Полицейский участок» стоимостью 8429 рублей. Наш конструктор выполняет 5 движений и стоит 2384 рубля.

Комплектующие и материал

Количество

Сервопривод MG-995

Сервопривод MG90S

Подшипник 30х55х13

Подшипник 3х8х3

М3х27 стойка латунная мама-мама

М3х10 винт с гол. под в/ш

Композитная панель размером 0,6м 2

Плата контроллера Arduino UNO R 3

Переменные резисторы 100ком.

Низкая себестоимость способствовала разработке технического конструктора руки - манипулятора, на примере которой наглядно продемонстрирован принцип работы манипулятора, выполнение поставленных задач в игровой форме.

Принцип работы в среде программирования Arduino отлично зарекомендовал себя на испытаниях. Такой способ управления и обучения программированию в игровой форме не только возможен, но и эффективен.

Начальный файл со скетчем, взятый на официальном сайте Arduino и отлаженный в среде программирования обеспечивает правильную и надежную работу манипулятора.

В дальнейшем хочу отказаться от дорогостоящих сервоприводов и использовать шаговые двигатели, таким образом, она будет достаточно точно и плавно перемещаться.

Управление манипулятором осуществить с помощью пантографа по радиоканалу Bluetooth.

    Источники информации

Гололобов Н. В.О проекте Arduino для школьников. Москва. 2011.

Курт Е. Д. Введение в микроконтроллеры с Перевод на русский язык Т. Волкова. 2012.

Белов А. В. Самоучитель разработчика устройств на микроконтроллерах AVR. Наука и техника, Санкт-Петербург, 2008.

http://www.customelectronics.ru/robo-ruka-sborka-mehaniki/ манипулятор на гусеничном ходу.

http://robocraft.ru/blog/electronics/660.html манипулятор по Bluetooth.

http://robocraft.ru/blog/mechanics/583.html ссылка на статью и видео.

http://edurobots.ru/category/uroki/ Arduino для начинающих.

    Приложение

Чертеж основания манипулятора

Чертеж стрелы и захвата манипулятора.

Из особенностей данного робота на платформе Arduino можно отметить сложность его конструкции. Роборука состоит из множества рычагов, которые позволяют ей двигаться по всем осям, хватать и перемещать различные вещи, используя всего 4 серво-мотора. Собрав собственными руками такого робота, Вы точно сможете удивить своих друзей и близких возможностями и приятным видом данного устройства! Помните, что для программирования Вы всегда сможете воспользоваться нашей графической средой RobotON Studio!

Если у Вас появятся вопросы или замечания, мы всегда на связи! Создавайте и выкладывайте свои результаты!

Особенности:

Чтобы собрать робота манипулятора своими руками, вам понадобится довольно много компонентов. Основную часть занимают 3D печатные детали, их около 18 штук (печатать горку необязательно).Если вы скачали и распечатали все необходимое, то вам потребуются болты, гайки и электроника:

  • 5 болтов М4 20мм, 1 на 40 мм и соответствующие гайки с защитой от раскрутки
  • 6 болтов М3 10мм, 1 на 20 мм и соответствующие гайки
  • Макетка с соединительными проводами или шилд
  • Arduino Nano
  • 4 серво мотора SG 90

После сборки корпуса ВАЖНО убедиться в его свободной подвижности. Если ключевые узлы Роборуки двигаются с трудом, серво-моторы могут не справиться с нагрузкой. Собирая электронику, необходимо помнить, что подключать цепь к питанию лучше после полной проверки соединений. Чтобы избежать поломки серво-приводов SG 90, не нужно крутить руками сам мотор, если нет необходимости. В случае, если нужно разработать SG 90, нужно плавно подвигать вал мотора в разные стороны.

Характеристики:
  • Простое программирование ввиду наличия малого количества моторов, причем одного типа
  • Наличие мертвых зон для некоторых серво-приводах
  • Широкая применимость робота в повседневной жизни
  • Интерсная инженерная работа
  • Необходимость использования 3D принтера

Всем привет!
Пару лет назад на kickstarter появился очень занятный проект от uFactory - настольная робо-рука uArm . Они обещали со временем сделать проект открытым, но я не мог ждать и занялся реверс-инжинирингом по фотографиям.
За эти годы я сделал четыре версии своего виденья этого манипулятора и в итоге разработал вот такую конструкцию:
Это робо-рука с интегрированным контроллером, приводимая в движение пятью сервпоприводами. Основное ее достоинство в том, что все детали либо можно купить, либо дешево и быстро вырязать из оргстекла лазером.
Так как в качестве источника вдохновения я брал open sorce - проект, то всеми своими результатми делюсь полностью. Вы сможете скачать все исходники по ссылкам в конце статьи и, при желании, собрать такую же (все ссылки в конце статьи).

Но проще один раз показать ее в работе, чем долго рассказывать что она из себя представляет:

Итак, перейдем к описанию.
Технические характеристики

  1. Высота: 300мм.
  2. Рабочая зона (при полностью вытянутом манипуляторе): от 140мм до 300мм вокруг основания
  3. Максимальная грузоподъемность на вытянутой руке, не менее: 200г
  4. Потребляемый ток, не более: 6А
Также мне хочется отметить некоторые особенности конструкции:
  1. Подшипники во всех подвижных частях манипулятора. Всего их одинадцать: 10 штук на вал 3мм и один на вал 30мм.
  2. Простота сборки. Я очень много внимания уделил тому, чтобы была такая последовательность сборки манипулятора при которой все детали прикручивать предельно удобно. Особенно сложно было сделать это для узлов мощных сервоприводов в основании.
  3. Все мощные сервоприводы расположены в основании. То есть "нижние" сервоприводы не таскают "верхние".
  4. За счет параллельных шарниров инструмент всегда остается параллелен или перпендикулярен земле.
  5. Положение манипулятора можно менять на 90 градусов.
  6. Готовое Arduino-совместимое программное обеспечение. Правильно собранная рука может управляться мышкой, а по примерам кода можно составить свои алгоритмы движения
Описание конструкции
Все детали манипулятора режутся из оргстекла толщиной 3 и 5мм:

Обратите внимание, как собирается поворотное основание:
Самый сложный, это узел в нижней части манипулятора. В первых версиях у меня уходило очень много сил, чтобы собрать его. В нем соединяются три сервопривода и передаются усилия на захват. Детали вращаются вокруг штифта диаметром 6мм. Захват удерживается парралельно (или перпендикулярно) рабочей поверхности за счет дополнительных тяг:

Манипулятор с установленым плечом и локтем показан на фотографии ниже. К нему еще только предстоит добавить клешню и тяги для нее:

Клешня тоже устанавливается на подшипниках. Она может сжиматься и поворачиваться вокруг своей оси:
Клешню можно установить как вертикально, так и горизонтально:

Управляется все Arduino-совместимой платой и шилдом для нее:

Сборка
Чтобы собрать манипулятор потребуется около двух часов и куча крепежа. Сам процесс сборки я офмил в виде инструкции в фотографиях (осторожно, траффик!) с подробными комментариями по каждой операции. Также я сделал подробную 3D-модель в простой и бесплатной программе SketchUp. Так что всегда можно повертеть ее перед глазами и посмотреть непонятные места:


Электроника и программирование
Я сделал целый шилд, на котором установил, помимо разъемов сервоприводов и питания, переменные резисторы. Для удобства отладки. На самом деле достаточно при помощи макетки подвести сигналы к двигателям. Но у меня в итоге получился вот такой шилд, который (так уж сложилось) я заказал на заводе:

Вообще я сделал три разные программы под Arduino. Одна для управления с компьютера, одна для работы в демо-режиме и одна для управления кнопками и переменными резисторами. Самая интересная из них, конечно, первая. Я не буду приводить здесь код целиком - он доступен в онлайн .
Для управления необходимо скачать программу для компьютера. После ее запуска мышь переходит в режим управления рукой. Движение отвечает за перемещение по XY, колесико изменяет высоту, ЛКМ/ПКМ - захват, ПКМ+колесико - поворот манипулятора. И это на самом деле удобно. Это было на видео в начале статьи.
Исходники проекта

Робот-манипулятор MeArm — карманная версия промышленного манипулятора. MeArm - простой в сборке и управлении робот, механическая рука. Манипулятор имеет четыре степени свободы, что позволяет легко захватывать и перемещать различные небольшие предметы.

Данный товар представлен в виде набора для сборки. Включает в себя следующие части:

  • набор деталей из прозрачного акрила для сборки механического манипулятора;
  • 4 сервопривода;
  • плата управления, на которой расположен микроконтроллер Arduino Pro micro и графический дисплей Nokia 5110;
  • плата джойстиков, содержащая два двухкоординатных аналоговых джойстика;
  • USB кабель питания.


Перед сборкой механического манипулятора необходимо произвести калибровку сервоприводов. Для калибровки будем использовать контроллер Arduino. Подсоединяем сервоприводы к плате Arduino (необходим внешний источник питания 5-6В 2А).

Servo middle, left, right, claw ; // создание 4 объектов Servo

Void setup()
{
Serial.begin(9600);
middle.attach(11); // присоединяет серво на контакт 11 на вращение платформы
left.attach(10); // присоединяет серво на контакт 10 на левое плечо
right.attach(9); // присоединяет серво на контакт 11 на правое плечо
claw.attach(6); // присоединяет серво на контакт 6 claw (захват)
}

Void loop()
{
// устанавливает позицию сервопривода по величине(в градусах)
middle.write(90);
left.write(90);
right.write(90);
claw.write(25);
delay(300);
}
Используя маркер, сделайте линию через корпус серводвигателя и шпиндель. Подключите пластмассовую качалку из комплекта к сервоприводу, как показано ниже с помощью небольшого винта из комплекта креплений к сервоприводу. Мы будем использовать их в этом положении при сборке механической части MeArm. Будьте осторожны, чтобы не переместить положение шпинделя.


Теперь можно производить сборку механического манипулятора.
Возьмём основание и прикрепим ножки к её углам. Затем установим четыре 20 мм болта и накрутим на них гайки (половину от общей длины).

Теперь крепим центральный сервопривод двумя 8-мм болтами к маленькой пластине, и получившуюся конструкцию крепим к основанию с помощью 20 мм болтов.

Собираем левую секцию конструкции.

Собираем правую секцию конструкции.

Теперь необходимо соединить левую и правую секции. Сначала леую к переходной пластине

Потом правую, и получаем

Подсоединяем конструкцию к платформе

И собираем "клешню"

Крепим "клешню"

Для сборки можно использовать следующее руководство (на англ. языке) или руководство по сборке подобного манипулятора (на русском).

Схема расположения выводов

Теперь можно приступать к написанию Arduino кода. Для управления манипуляторм, наряду с возможностью управления управления с помощью джойстика, было бы неплохо направлять манипулятор в какую-то определенную точку декартовых координат (x, y, z). Есть соответствующая библиотека, которую можно скачать с github - https://github.com/mimeindustries/MeArm/tree/master/Code/Arduino/BobStonesArduinoCode .
Координаты измеряются в мм от центра вращения. Исходное положение находится в точке (0, 100, 50), то есть 100 мм вперед от основания и 50 мм от земли.
Пример использования библиотеки для установки манипулятора в определенной точке декартовых координат:

#include "meArm.h"
#include

Void setup() {
arm.begin(11, 10, 9, 6);
arm.openGripper();
}

Void loop() {
// вверх и влево
arm.gotoPoint(-80,100,140);
// захватить
arm.closeGripper();
// вниз, вред и вправо
arm.gotoPoint(70,200,10);
// отпустить захват
arm.openGripper();
// вернуться вт начальную точку
arm.gotoPoint(0,100,50);
}

Методы класса meArm:

void begin (int pinBase , int pinShoulder , int pinElbow , int pinGripper ) - запуск meArm, указываются пины подключения для сервоприводов middle, left, right, claw. Необходимо вызвать в setup();
void openGripper () - открыть захват;
void closeGripper () - захватить;
void gotoPoint (float x , float y , float z ) - переместить манипулятор в позицию декартовых координат (x, y, z);
float getX () - текущая координата X;
float getY () - текущая координата Y;
float getZ () - текущая координата Z.

Руководство по сборке (англ.)

Здравствуйте!

Рассказываем о линейке коллаборативных роботов-манипуляторов Universal Robots .

Компания Юниверсал-роботс родом из Дании, занимается выпуском коллаборативных роботов-манипуляторов для автоматизации циклических производственных процессов. В этой статье приведем их основные технические характеристики и рассмотрим области применения.

Что это?

Продукция компании представлена линейкой из трех облегченных промышленных манипуляционных устройств с разомкнутой кинематической цепью:
UR3 , UR5 , UR10 .
Все модели имеют 6 степеней подвижности: 3 переносные и 3 ориентирующие. Устройства от Юниверсал-роботс производят только угловые перемещения.
Роботы-манипуляторы разделены на классы, в зависимости от предельно допустимой полезной нагрузки. Другими отличиями являются - радиус рабочей зоны, вес и диаметр основания.
Все манипуляторы UR оснащены датчиками абсолютного положения высокой точности, которые упрощают интеграцию с внешними устройствами и оборудованием. Благодаря компактному исполнению, манипуляторы UR не занимают много места и могут устанавливаться в рабочих секциях или на производственных линиях, где не помещаются обычные роботы.Характеристики:
Чем интересны Простота программирования

Специально разработанная и запатентованная технология программирования позволяет операторам, не владеющим специальными навыками, быстро выполнить настройку роботов-манипуляторов UR и управлять ими с помощью интуитивной технологии 3D-визуализации. Программирование происходит путем серии простых передвижений рабочего органа манипулятора в необходимые положения, либо нажатием стрелок в специальной программе на планшете.UR3: UR5: UR10: Быстрая настройка

Оператору, выполняющему первичный запуск оборудования, потребуется менее часа для распаковки, монтажа и программирования первой простой операции. UR3: UR5: UR10: Коллаборативность и безопасность

Манипуляторы UR способны заменить операторов, выполняющих рутинные задачи в опасных и загрязненных условиях. В системе управления ведется учет внешних возмущающих воздействий, оказываемых на робот-манипулятор в процессе работы. Благодаря этому, манипуляционные системы UR можно эксплуатировать без защитных ограждений, рядом с рабочими местами персонала. Системы безопасности роботов одобрены и сертифицированы TÜV – Союзом работников технического надзора Германии.
UR3: UR5: UR10: Многообразие рабочих органов

На конце промышленных манипуляторов UR предусмотрено стандартизированное крепление для установки специальных рабочих органов. Между рабочим органом и конечным звеном манипулятора можно установить дополнительные модули силомоментных сенсоров или камер.Возможности применения

С промышленными роботами-манипуляторами UR открываются возможности автоматизации практически всех циклических рутинных процессов. Устройства компании Юниверсал-роботс отлично зарекомендовали себя в различных областях применения.

Перекладка

Установка манипуляторов UR на участках перекладки и упаковки позволяет увеличить точность и уменьшить усадку. Большинство операций по перекладке может осуществляться без надзора.Полировка, буферовка, шлифовка

Встроенная система датчиков позволяет контролировать точность и равномерность прикладываемого усилия на криволинейных и неровных поверхностях.

Литье под давлением

Высокая точность повторяющихся движений позволяет применять роботы UR для задач переработки полимеров и инжекционного литья.
Обслуживание станков с ЧПУ

Класс защиты оболочки обеспечивает возможность установки манипуляционных систем для совместной работы со станками ЧПУ.Упаковка и штабелирование

Традиционные технологии автоматизации отличаются громоздкостью и дороговизной. Легко настраиваемые роботы UR способны работать без защитных экранов рядом с сотрудниками или без них 24 часа в сутки, обеспечиваю высокую точность и производительность.Контроль качества

Роботизированный манипулятор с видеокамерами пригоден для проведения трехмерных измерений, что является дополнительной гарантией качества выпускаемой продукции.Сборка

Простое устройство крепления рабочего органа позволяет оснащать роботы UR подходящими вспомогательными механизмами, необходимыми для сборки деталей из дерева, пластика, металла и других материалов.Свинчивание

Система управления позволяет контролировать развиваемый момент во избегании избыточной затяжки и обеспечения требуемого натяжения.Склеивание и сварка

Высокая точность позиционирования рабочего органа позволяет сократить количество отходов при выполнении операций склейки или нанесения веществ.
Промышленные роботы-манипуляторы UR могут выполнять различные типы сварки: дуговую, точечную, ультразвуковую и плазменную.Итого:

Промышленные манипуляторы от Юниверсал-роботс компактны, легки, просты в освоении и обращении. Роботы UR – гибкое решение для широкого круга задач. Манипуляторы можно запрограммировать на любые действия присущие движениям человеческой руки, а вращательные движения им удаются намного лучше. Манипуляторам не свойственны усталость и боязнь получить травму, не нужны перерывы и выходные.
Решения от Юниверсал-роботс позволяют автоматизировать любой рутинный процесс, что увеличивает скорость и качество производства.

Обсудите автоматизацию ваших производственных процессов с помощью манипуляторов Юниверсал-роботс с официальным дилером -

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации