Расчет глубины заземления. Территория электротехнической информации WEBSOR

) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчета сопротивления заземления одиночного вертикального заземлителя:


где:
ρ - удельное сопротивление грунта (Ом*м )
L - длина заземлителя (м)
d - диаметр заземлителя (м)
T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм

Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:

- для комплекта ZZ-100-102

Вклад соединительного заземляющего проводника здесь не учитывается.

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования ".

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов - для модульного
  • не менее 7 метров - для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .

Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления ".

Сервис расчета вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект , защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Цель работы: ознакомиться с алгоритмом расчета защитного заземления методом коэффициентов использования заземлителей (электродов) по допустимому сопротивлению системы заземления растеканию тока.

Цель расчета: определение основных парамертров заземления (количества, размеров и размещения одиночных вертикальных заземлителей и горизонтальных заземляющих проводников)

1. Краткие теоретические сведения.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.

Заземляющим устройством называется совокупность вертикальных заземлителей – металлических проводников, находящихся в непосредственном соприкосновении с землей, и горизонтальных заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводы, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещении с повышенной опасностью и особо опасных по условиям поражений током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.

Различают заземлители искусственные , предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей (проложенные в земле металлически водопроводные трубы; трубы артезианских скважин; металлические каркасы зданий и сооружений и т.п.). Запрещается использовать в качестве естественных заземлителей трубопроводы горючих жидкостей, горючих и взрывоопасных газов, а также трубопроводы, покрытые изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономию. Недостатками естественных заземлителей является их доступность и возможность нарушения непрерывности соединения протяженных заземлителей.

По форме расположения заземлителей заземление бывает контурное и выносное.

В контурном заземлении все электроды располагают по периметру защищаемой территории. В выносных (сосредоточенное или очаговое) –заземлители располагают на расстоянии друг от друга не менее длины электрода.

В соответствии с требованиями механической прочности и допустимого нагрева токами замыкания на землю в установках напряжением свыше 1000В заземляющие стальные магистральные проводники должны иметь сечение не менее 120 мм 2 , а в установках до 1000В – не менее 100 мм 2 .

Дополнительная информация (извлечения из ПУЭ – «Правила устройства электроустановок», 2000г.) приведена в Приложении 2.

2. Порядок расчета.

2.1 Определяют расчетный ток короткого замыкания по формуле:

I 3 = U л ∙ (35 l к + l в )/350 , А , (1)

2.2 Рассчитывают необходимое сопротивление заземляющего устройства R з в соответствии с табл. 1 1 . В случае, если R з больше допустимого значения, то в дальнейших расчетах R з принимают равным допустимому значению.

2.3 Определяют расчетное удельное сопротивление грунта ρ р :

ρ р = ρ изм , Ом ∙ м (2)

где ρ изм – удельное электрическое сопротивление грунта, полученное измерением или из справочной литературы (табл.2); - коэффициента сезонности, значение которого зависит от климатической зоны; (для четвертой климатической зоны со средними низшими температурами в январе от 0 до – 5 0 С и высшими в июле от +23 до +26 0 С = 1,3 ).

При высоком удельном сопротивлении земли применяют способы искусственного снижения ρ изм в целях уменьшения размеров и количества используемых электродов и площади территории, занимаемой заземлителем. Существенного результата достигают химической обработкой области вокруг заземлителей с помощью электролитов, либо путем укладки заземлителей в котлованы с насыпным углем, коксом, глиной.

) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчета сопротивления заземления одиночного вертикального заземлителя:


где:
ρ - удельное сопротивление грунта (Ом*м )
L - длина заземлителя (м)
d - диаметр заземлителя (м)
T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм

Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:

- для комплекта ZZ-100-102

Вклад соединительного заземляющего проводника здесь не учитывается.

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования ".

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов - для модульного
  • не менее 7 метров - для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .

Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления ".

Сервис расчета вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным , защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Для того, чтобы приступить к расчету, .

Заземление - ценное сооружение, защищающее владельцев домашней техники от непосредственного контакта с весьма полезным, но крайне ретивым потоком электроэнергии. Заземляющее устройство обеспечит безопасность при «отгорании» нуля, что нередко случается на загородных ЛЭП при шквальном ветре. Оно исключит риски поражений при утечках на нетоковедущие металлические детали и корпус из-за прохудившейся изоляции. Сооружение защитной системы – мероприятие, не требующее сверх усилий и супер вложений, если грамотно сделан расчет заземления. Благодаря предварительным вычислениям будущий исполнитель сможет определиться с предстоящими расходами и с целесообразностью предстоящего дела.

Строить или не строить?

В уже изрядно забытую пору скудного количества бытовых электроприборов владельцы частных домов редко «баловались» устройством заземления. Считалось, что с задачей отведения утечки электричества превосходно справятся естественные заземлители, такие как:

  • стальные или чугунные трубопроводы, если вокруг них не уложена изоляция, т.е. имеется непосредственный плотный контакт с почвой;
  • стальная обсадка водяной скважины;
  • металлические опоры оград, фонарей;
  • свинцовая оплетка подземных кабельных сетей;
  • арматура фундаментов, колонн, ферм, заглубленных ниже горизонта сезонного промерзания.

Обратите внимание, что алюминиевая оболочка подземных кабельных коммуникаций не может использоваться в качестве элемента заземления, т.к. покрыта антикоррозионным слоем. Защитное покрытие препятствует рассеиванию тока в грунте.

Оптимальным естественным заземлителем признан стальной водопровод, проложенный без изоляции. Благодаря значительной протяженности минимизируется сопротивление току растекания. К тому же наружный водопровод укладывают ниже отметки уровня сезонного промерзания. Значит, на параметры сопротивления не будут влиять морозы и засушливая летняя погода. В эти периоды уменьшается влажность грунта, и, как следствие, увеличивается сопротивление.

Стальной каркас подземных железобетонных конструкций может служить элементом системы заземления, если:

  • с глинистым, суглинистым, супесчаным и влажным песчаным грунтом контактирует достаточная по нормам ПУЭ площадь;
  • в период сооружения фундамента арматура в двух или более местах была выведена на дневную поверхность;
  • стальные элементы данного естественного заземления были соединены между собой сваркой, а не проволочной связкой;
  • сопротивление арматуры, играющей роль электродов, рассчитано согласно требованиям ПУЭ;
  • установлена электрическая связь с заземляющей шиной.

Без соблюдения перечисленных условий подземные ж/б сооружения не смогут выполнить функцию надежного заземления.

Из всего набора вышеперечисленных естественных заземлителей расчетам подлежат только подземные ж/б конструкции. Точно вычислить сопротивление растеканию тока трубопроводов, металлической брони и каналов подземных силовых сетей не представляется возможным. Особенно если их прокладка осуществлялась пару десятилетий назад, и поверхность существенно изъедена коррозией.

Эффективность естественных заземлителей определяется путем банальных измерений, для производства чего нужно вызвать сотрудника местной энергослужбы. Показания его прибора подскажут, нужен или нет владельцу загородной собственности повторный заземляющий контур в качестве дополнения к существующим мерам заземления, выполненным компанией-поставщиком электроэнергии.

При наличии на участке естественных заземлителей с соответствующими нормам ПУЭ значениями сопротивления, устраивать защитное заземление нецелесообразно. Т.е. если прибор «агента» энергоуправления показал меньше 4 Ом, организацию контура заземления можно отложить «на потом». Однако лучше перестраховаться и предупредить вероятные риски, для чего и сооружается искусственное заземляющее устройство.

Расчеты для устройства искусственного заземления

Нужно признаться, что досконально рассчитать устройство заземления сложно, практически невозможно. Даже в среде профессиональных электриков практикуется метод приблизительного подбора количества электродов и расстояний между ними. Слишком много природных факторов влияет на результат работы. Уровень влажности нестабилен, зачастую доподлинно не исследована фактическая плотность и удельное сопротивление грунта и т.д. Из-за чего в конечном итоге сопротивление устроенного контура или единичного заземлителя отличается от расчетного значения.

Эту разницу выявляют посредством тех же измерений и корректируют путем установки дополнительных электродов или путем наращивания длины единичного стержня. Однако от предварительных расчетов отказываться не стоит, потому что они помогут:

  • исключить или сократить дополнительные затраты на приобретение материала и рытье ответвлений траншей;
  • выбрать оптимальную конфигурацию системы заземления;
  • составить план действий.

Для облегчения непростых и довольно запутанных расчетов разработано несколько программ, но для того чтобы грамотно ими воспользоваться пригодятся знания о принципе и порядке вычислений.

Составляющие защитной системы

Система защитного заземления представляет собой комплекс заглубленных в грунт электродов, соединенных электрической связью с заземляющей шиной. Основными ее составляющими являются:

  • один или несколько металлических стержней, передающих ток растекания земле. Чаще всего в качестве их применяются вертикально забитые в грунт отрезки длинномерного металлопроката: трубы, равнополочного уголка, круглой стали. Реже функцию электродов выполняют горизонтально зарытые в траншею трубы или листовая сталь;
  • металлическая связь, соединяющая группу заземлителей в функциональную систему. Зачастую это горизонтально расположенный заземляющий проводник из полосы, уголка или прутка. Его приваривают к верхушкам заглубленных в грунт электродов;
  • проводник, соединяющий расположенное в земле заземляющее устройство с шиной, а через нее с защищаемой техникой.

Две последних составляющих носят общее название – «заземляющий проводник» и, по сути, выполняют одну и ту же функцию. Разница заключается в том, что металлическая связь между электродами расположена в земле, а проводник, подключающий заземление к шине, находится на дневной поверхности. Отсюда разные требования к материалам и коррозионной устойчивости, а также разброс в их стоимости.

Принципы и правила вычислений

Совокупность электродов и проводников, именуемая заземлением, устанавливается в грунт, который является непосредственным компонентом системы. Потому в расчетах его характеристики принимают непосредственное участие наравне с подбором длины элементов искусственного заземления.

Алгоритм расчетов прост. Производятся они согласно имеющимся в ПУЭ формулам, в которых есть переменные единицы, зависящие от решения самостоятельного мастера, и постоянные табличные значения. Например, приблизительная величина сопротивления грунта.

Определение оптимального контура

Грамотный расчет защитного заземления начинается с выбора контура, который может повторять любую из геометрических фигур или обычную линию. Выбор этот зависит формы и размеров площадки, имеющейся в распоряжении мастера. Удобней и проще соорудить линейную систему, потому что для установки электродов потребуется вырыть только одну прямую траншею. Но расположенные в один ряд электроды будут экранировать, что неизбежно отразиться на токе растекания. Потому при расчетах линейного заземления в формулы вводится поправочный коэффициент.

Самой востребованной схемой для самостоятельного признают треугольник. Расположенные в вершинах его электроды при достаточном удалении друг от друга не мешают принятому каждым из них току свободно рассеиваться в земле. Трех металлических стержней для устройства защиты частного дома считают вполне достаточным количеством. Главное их правильно расположить: забить в грунт металлические стержни нужной длины на эффективном для работы расстоянии.

Расстояния между вертикальными электродами должны быть равными, независимо от конфигурации системы заземления. Расстояние между двумя соседними стержнями не должно быть равно их длине.

Выбор и расчет параметров электродов и проводников

Основными рабочими элементами защитного заземления являются вертикальные электроды, потому что рассеивать утечки тока придется именно им. Длина металлических стержней интересна, как с точки зрения эффективности защитной системы, так и с точки зрения металлоемкости и цены материала. Расстояние между ними определяет длину компонентов металлической связи: опять же расход материала для создания заземляющих проводников.

Обратите внимание, что сопротивление вертикальных заземлителей зависит преимущественно от их длины. Поперечные размеры несущественно влияют на эффективность. Однако величина сечения нормируется ПУЭ ввиду необходимости создать износостойкую защитную систему, элементы которой не менее 5-10 лет будут постепенно разрушаться коррозией.

Выбираем оптимальные параметры, учитывая, что лишние расходы нам вовсе не к чему. Не забываем, что чем больше метров металлопроката мы загоним в землю, тем больше пользы мы получим от контура. Метры «набрать» можно либо увеличивая длину стержней, либо увеличивая их количество. Дилемма: установка многократных заземлителей заставит изрядно потрудиться на поприще землекопа, а забивание длинных электродов кувалдой вручную превратит в крепкого молотобойца.

Что лучше: численность или длина, выберет непосредственный исполнитель, но существуют правила, согласно которым определяется:

  • длина электродов, потому что заглубить их нужно ниже горизонта сезонного промерзания как минимум на полметра. Так нужно, чтобы работоспособность системы не слишком страдала сезонных факторов, а также от засух и дождей;
  • расстояние между вертикальными заземлителями. Оно зависит от конфигурации контура и от длины электродов. Определить его можно по таблицам.

Отрезки металлопроката по 2,5-3 метра забивать кувалдой в землю трудно и неудобно даже с учетом того, что их 70 см будет погружено в заранее вырытую траншею. Рациональной длинной заземлителей считают 2,0м с вариациями вокруг этой цифры. Не забудьте, что длинные отрезки металлопроката нелегко и весьма накладно будет доставить на объект.

Грамотно экономим на материале

Уже упоминалось, что от сечения металлопроката мало что зависит, кроме цены материала. Разумней купить материал с наименьшей возможной площадью сечения. Без длительных рассуждений приведем наиболее экономичные и устойчивые к ударам кувалды варианты, это:

  • трубы с внутренним диаметром 32 мм и толщиной стенки 3 и более мм;
  • равнополочный уголок со стороной 50 или 60 мм и толщиной 4-5 мм;
  • круглая сталь с диаметром 12-16 мм.

Для создания подземной металлической связи лучше всего подойдет стальная полоса толщиной 4 мм или 6миллиметровый пруток. Не забываем, что горизонтальные проводники нужно приварить к вершинам электродов, потому к выбранному нами расстоянию между стержнями прибавим еще по 20 см. Надземный участок заземляющего проводника можно сделать из 4миллиметровой стальной полосы шириной 12 мм. Вывести на щиток его можно от ближайшего электрода: так и копать меньше придется, и материал сэкономим.

А вот теперь непосредственно формулы

С формой контура и с размерами элементов мы определились. Теперь можно загнать требующиеся параметры в специальную программу для электриков или воспользоваться приведенными ниже формулами. В соответствии с типом заземлителей выбираем формулу для производства расчетов:

Или воспользуемся универсальной формулой для расчета сопротивление одного вертикального стержня:

Для вычислений потребуются вспомогательные таблицы с приблизительными значениями, зависящими от состава грунта, его усредненной плотности, способности удерживать влагу и от климатической зоны:

Рассчитаем количество электродов, не учитывая значение сопротивления заземляющего горизонтального проводника:

Вычислим параметры горизонтального элемента системы заземления – горизонтального проводника:

Подсчитаем сопротивление вертикального электрода с учетом значения сопротивления горизонтального заземлителя:

Согласно результатам, полученным в результате усердных вычислений, запасаемся материалом и планируем время для устройства заземления.

Ввиду того что наибольшим сопротивлением наше защитное заземление будет обладать в засушливый и морозный период, его сооружением желательно заняться именно в это время. На строительство контура при правильной организации потратить нужно будет пару дней. Перед засыпкой траншеи надо будет проверить работоспособность системы. Это лучше сделать, когда в почве меньше всего содержится влаги. Правда, зима не слишком располагает к труду на открытых площадках, и земляные работы осложняет замерзший грунт. Значит, займемся строительством системы заземления в июле или в начале августа.

Контур заземления необходим для защиты людей от поражения электрическим током. Для молниезащиты создается собственное заземляющее устройство, не связанное с защитным контуром заземления. Для правильной их постройки требуется расчет.

Заземляющее устройство (ЗУ) имеет параметр, называемый сопротивлением растекания или просто – сопротивлением. Оно показывает, насколько хорошим проводником электрического тока является данное ЗУ. Для электроустановок с линейным напряжением 380 В сопротивление растекания ЗУ не должно быть более 30 Ом, на трансформаторных подстанциях – 4 Ом. Для контуров заземления медицинской техники и оборудования видеонаблюдения, серверных комнат, норма устанавливается индивидуально и составляет от 0,5 до 1 Ом.

Задача расчета заземляющего устройства – определение количества и расположения вертикальных и горизонтальных заземлителей, достаточного для получения требуемого сопротивления.

Определение удельного сопротивления грунта

На результаты расчетов ЗУ оказывает существенное влияние характеристика грунта в месте его постройки, называемая удельным сопротивлением (⍴). Для каждого из видов грунта существует расчетное значение, указанное в таблице.

На сопротивление грунта оказывают влияние влажность и температура. Зимой при максимальном промерзании и летом в засуху удельное сопротивление достигает максимальных значений. Для учета влияния погодных условий к величине ⍴ вводятся поправки для климатической зоны.


Если есть возможность, перед расчетами производят измерение удельного сопротивления.

Виды заземлителей и расчет их сопротивления

Заземлители бывают естественными и искусственными, и для создания заземляющего устройства используются и те, и другие. Рассчитать влияние естественных заземлителей (железобетонных фундаментов, свай) на величину сопротивления растекания сложно, это проще сделать методом измерений на месте. Сопротивление естественных заземлителей длиной более 100 м можно узнать из таблицы.


Если значение ⍴ отличается от 100 Ом∙м, значение R умножается на соотношение ⍴/100.

В качестве искусственных заземлителей используются арматура, трубы, угловая или полосовая сталь. Сопротивление каждого из них рассчитывается по собственной формуле, указанной в таблице.

Сопротивление растеканию одиночных заземлителей

Вид заземлителя

Расчетная формула

Вертикальный электрод из круглой арматурной стали или трубы. Верхний конец ниже уровня земли.
Вертикальный электрод из угловой стали. Верхний конец ниже уровня земли
Вертикальный электрод их круглой арматурной стали или трубы. Верхний конец над уровнем земли
Горизонтальный электрод из полосовой стали
Горизонтальный электрод из круглой арматурной стали или трубы
Электрод из пластины (уложена вертикально)
Вертикальный электрод из круглой арматурной или угловой стали
Горизонтальный электрод из круглой арматурной или полосовой стали

Значения переменных в формулах:

Теперь рассчитывается суммарное сопротивление штырей искусственных заземлителей:



Вычисляем сопротивление проводника, соединяющего вертикальные заземлители по формуле:

И полное сопротивление заземляющего устройства.


Если рассчитанное сопротивление контура заземления оказалось недостаточным, увеличиваем количество вертикальных заземлителей или изменяем их вид. Повторяем расчет до получения требуемого значения сопротивления.

© 2024 ongun.ru
Энциклопедия по отоплению, газоснабжению, канализации