Комбинаторика - основные понятия и формулы. Перестановки, размещения, сочетания

КОМБИНАТОРИКА

Комбинаторика - раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В - n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Решение

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n 1 способами, второе действие n 2 способами, третье - n 3 способами и так до k-го действия, которое можно выполнить n k способами, то все k действий вместе могут быть выполнены:

способами.

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Решение

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Решение

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.



Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение.

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно вы б рать и разместить по m различным местам m из n предметов, с реди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера- составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Перестановки без повторений . Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Решение

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ "КОМБИНАТОРИКА"

  • 2.1. Относительная частота. Устойчивость относительной частоты
  • 2.2. Ограниченность классического определения вероятности. Статистическая вероятность
  • 2.3. Геометрические вероятности
  • 2.4. Теорема сложения вероятностей
  • 2.5. Полная группа событий
  • 2.6. Противоположные события
  • 2.7. Принцип практической невозможности маловероятных событий
  • 2.8. Произведение событий. Условная вероятность
  • 2.9. Теорема умножения вероятностей
  • 2.10. Независимые события. Теорема умножения для независимых событий
  • 2.10. Вероятность появления хотя бы одного события
  • Лекция №3 следствия теорем сложения и умножения
  • 3.1. Теорема сложения вероятностей совместных событий
  • 3.2. Формула полной вероятности
  • 3.3. Вероятность гипотез. Формулы Бейеса
  • 4. Повторение испытаний
  • 4.1. Формула Бернулли
  • 4.2. Предельные теоремы в схеме Бернулли
  • 4.3. Локальная и интегральная теоремы Муавра-Лапласа
  • 4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
  • 5. Случайные величины
  • 5.1. Понятие случайной величины. Закон распределения случайной величины
  • 5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
  • 5.3. Биномиальное распределение
  • 5.4. Распределение Пуассона
  • 5.5. Геометрическое распределение
  • 5.6. Гипергеометрическое распределение
  • 6. Математическое ожидание дискретной случайной величины
  • 6.1. Числовые характеристики дискретных случайных величин
  • 6.2. Математическое ожидание дискретной случайной величины
  • 6.3. Вероятностный смысл математического ожидания
  • 6.4. Свойства математического ожидания
  • 6.5. Математическое ожидание числа появлений события в независимых испытаниях
  • 7. Дисперсия дискретной случайной величины
  • 7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
  • 7.2. Отклонение случайной величины от ее математического ожидания
  • 7.3. Дисперсия дискретной случайной величины
  • 7.4. Формула для вычисления дисперсии
  • 7.5. Свойства дисперсии
  • 7.6. Дисперсия числа появлений события в независимых испытаниях
  • 7.7. Среднее квадратическое отклонение
  • 7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
  • 7.9. Одинаково распределенные взаимно независимые случайные величины
  • 7.10. Начальные и центральные теоретические моменты
  • 8. Закон больших чисел
  • 8.1. Предварительные замечания
  • 8.2. Неравенство Чебышева
  • 8.3. Теорема Чебышева
  • 8.4. Сущность теоремы Чебышева
  • 8.5. Значение теоремы Чебышева для практики
  • 8.6. Теорема Бернулли
  • Функция распределения вероятностей случайной величины
  • 9.1. Определение функции распределения
  • 9.2. Свойства функции распределения
  • 9.3. График функции распределения
  • 10. Плотность распределения вероятностей непрерывной случайной величины
  • 10.1. Определение плотности распределения
  • 10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
  • 10.3. Закон равномерного распределения вероятностей
  • 11. Нормальное распределение
  • 11.1. Числовые характеристики непрерывных случайных величин
  • 11.2. Нормальное распределение
  • 11.3. Нормальная кривая
  • 11.4. Влияние параметров нормального распределения на форму нормальной кривой
  • 11.5. Вероятность попадания в заданный интервал нормальной случайной величины
  • 11.6. Вычисление вероятности заданного отклонения
  • 11.7. Правило трех сигм
  • 11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
  • 11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
  • 11.10. Функция одного случайного аргумента и ее распределение
  • 11.11. Математическое ожидание функции одного случайного аргумента
  • 11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
  • 11.13. Распределение «хи квадрат»
  • 11.14. Распределение Стьюдента
  • 11.15. Распределение f Фишера – Снедекора
  • 12. Показательное распределение
  • 12.1. Определение показательного распределения
  • 12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
  • § 3. Числовые характеристики показательного распределения
  • 12.4. Функция надежности
  • 12.5. Показательный закон надежности
  • 12.6. Характеристическое свойство показательного закона надежности
  • 1.7. Основные формулы комбинаторики

    При нахождении вероятностей в схеме классического определения широко используется комбинаторика, поэтому напомним наиболее употребительные определения и формулы для вычисления.

    Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества.

    Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

    Р n = n !

    Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.

    Пример . Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?

    Решение . Искомое число трехзначных чисел Р 3 = 3! = 123 = 6.

    Размещениями n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

    Пример . Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?

    Решение . Искомое число сигналов
    .

    Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

    .

    Пример . Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?

    Решение . Искомое число способов
    .

    Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

    Замечание . Выше предполагалось, что все n элементов различны. Если же некоторые элементы повторяются, то в этом случае комбинации с повторениями вычисляют по другим формулам. Например, если среди n элементов есть n 1 элементов одного вида, n 2 элементов другого вида и т. д., то число перестановок с повторениями

    ,

    где n 1 + n 2 + ... = n .

    При решении задач комбинаторики используют следующие правила:

    1. Правило суммы. Если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А , либо В можно m + n способами.

    2. Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А , В ) в указанном порядке может быть выбрана mn способами.

    Приведем несколько примеров непосредственного вычисления вероятностей.

    Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

    Решение. Обозначим через А событие – набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

    Р (А )=1/10.

    Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

    Решение. Обозначим через В событие – набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т.е.
    . Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

    Р (В )=1/90.

    Пример 3. Указать ошибку «решения» задачи: «Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие А )».

    Решение. Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию А благоприятствует один исход; общее число исходов равно двум. Следовательно, искомая вероятность

    Р (А ) = 1/2.

    Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.

    Правильное решение . Общее число равновозможных исходов испытания равно 66 = 36 (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию А только 3 исхода: (1; 3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность

    Р (А ) = 3/36 = 1/12.

    Пример 4. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

    Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. числу сочетаний из 10 элементов но 6 элементов ().

    Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять на семи стандартных деталей способами; при этом остальные 6 – 4 = 2 детали должны быть нестандартными; взять же 2 нестандартные детали из 10 – 7 = 3 нестандартных деталей можноспособами. Следовательно, число благоприятствующих исходов равно
    .

    Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

    Комбинаторика — раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.

    Комбинаторика возникла в XVI веке. Первые комбинаторные задачи касались азартных игр. Сегодня комбинаторные методы используются для решения транспортных задач, составления планов производства и реализации продукции. Установлены связи между комбинаторикой и задачами линейного программирования, статистики. Комбинаторика используется для составления и декодирования шифров, для решения других проблем теории информации.

    Значительную роль комбинаторные методы играют и в чисто математических вопросах — теории групп и их представлений, изучении основ геометрии, неассоциативных алгебр и др.

    Пример комбинаторной задачи. Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

    I способ. Постараемся выписать все такие числа. На первом месте может стоять любая цифра кроме 0. Например, 2. На втором месте любая цифра из 0, 4, 6 и 8. Пусть 0. Тогда в качестве третьей цифры можно выбрать любую из 4, 6, 8. Получаем три числа

    Вместо 0 на второе место можно было поставить 4, тогда третье цифрой можно записать или 0, или 6, или 8:

    Рассуждая аналогично, получаем ещё две тройки трёхзначных чисел с цифрой 2 на первом месте:

    Других, кроме выписанных 12-ти, трёхзначных чисел с цифрой 2 на первом месте, и удовлетворяющих условию, нет.

    Если на первом месте записать цифру 4, а остальные выбирать из цифр 0, 2, 6, 8, то получим ещё 12 чисел:

    По столько же трёхзначных чисел можно составить с цифрой 6 на первом месте и цифрой 8 на первом месте. Значит, искомое количество:

    Вот эти числа:

    204, 206, 208, 240, 246, 248, 260, 264, 268, 280, 284, 286;

    402, 406, 408, 420, 426, 428, 460, 462, 468, 480, 482, 486;

    602, 604, 608, 620, 624, 628, 640, 642, 648, 680, 682, 684;

    802, 804, 806, 820, 824, 826, 840, 842, 846, 860, 862, 864.

    Ответ: 48.

    Метод рассуждения, которым мы воспользовались при решении предыдущей задачи, называется перебором возможных вариантов .

    Правила сложения и умножения

    Комбинаторное правило сложения (правило "или") — одно из основных правил комбинаторики, утверждающее, что, если имеется n элементов и элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 A n можно выбрать m n способами, то выбрать или A 1 , или A 2 , или, и так далее, A n можно

    m 1 + m 2 + ... + m n

    способами.

    Например, выбрать подарок ребёнку из 9 машинок, 7 плюшевых медведей и 3 железных дорог можно

    способами.

    Ответ: 19.

    Правило умножения (правило "и") — ещё одно из важных правил комбинаторики. Согласно ему, если элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 способами и так далее, элемент A n можно выбрать m n способами, то набор элементов (A 1 , A 2 , ... , A n ) можно выбрать

    m 1 · m 2 · ... · m n

    способами.

    Например.

    1) Выбрать ребёнку в подарок машинку, плюшевого медведя и железную дорогу, выбирая из 9 машинок, 7 плюшевых медведей и 3 железных дорог, можно

    9 · 7 · 3 = 189

    способами.

    Ответ: 189.

    2) Воспользуемся правилом умножения для решения задачи, уже рассмотренной выше: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

    II способ.

    0 не может стоять первым, значит первую цифру нужно выбрать из 2, 4, 6, 8 — 4 способа;

    второй цифрой может быть любая из четырёх оставшихся — 4 способа;

    третью цифру можно выбрать среди трёх оставшихся — 3 способа.

    Итак, искомое количество трёхзначных чисел:

    4 · 4 · 3 = 48.

    Ответ: 48.

    Перестановки

    Множество из n элементов называется упорядоченным , если каждому его элементу поставлено в соответствие натуральное число от 1 до n .

    Перестановкой из n элементов называется любое упорядоченное множество из n элементов.

    Например, из 4 элементов ♦ ♣ ♠ можно составить следующие 24 перестановки:

    ♦ ♣ ♠
    ♣ ♠


    ♦ ♠



    ♦ ♣ ♠



    ♦ ♣ ♠
    ♣ ♠


    ♦ ♠







    Количество перестановок из n элементов принято обозначать P n . С помощью перебора возможных вариантов легко убедиться, в том что

    P 1 = 1; P 2 = 2; P 3 = 6; P 4 = 24.

    Вообще, число всевозможных перестановок из n элементов равно произведению всех натуральных чисел от 1 до n , то есть n ! (читается "эн факториал"):

    P n = 1 · 2 · 3 · ... · (n - 1 ) · n = n !.

    Для P n справедлива рекуррентная формула:

    P n = n · P n - 1 .

    Значение факториала определено не только для натуральных чисел, но и для 0:

    0! = 1 .

    Таблица факториалов целых чисел от 0 до 10
    n
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    n !
    1
    1
    2
    6
    24
    120
    720
    5 040
    40 320
    362 880
    3 628 800

    Например, сколькими способами 5 мальчиков и 5 девочек могут занять в театре места в одном ряду с 1-го по 10-е место, если никакие два мальчика и никакие две девочки не сидят рядом?

    Возможны два случая с одинаковым количеством способов: 1) мальчики — на нечётных местах, девочки на чётных и 2) наоборот.

    Рассмотрим первый случай. Мальчики по нечётным местам могут сесть

    P 5 = 120

    способами. Столько способов и для девочек на чётных местах. Согласно правилу умножения, мальчики — на нечётных местах, девочки на чётных могут расположиться

    120 · 120 = 14 400

    способами. Значит, всего способов

    14 400 + 14 400 = 28 800.

    Ответ: 28 800.

    Перестановки с повторениями

    Перестановкой с повторениями из n элементов, среди которых k разных, при этом насчитывается n 1 неразличимых элементов первого типа, n 2 неразличимых элементов второго типа и так далее, n k неразличимых элементов k -го типа (где n 1 + n 2 + … + n k = n ), называется любое расположение этих элементов по n различным местам.

    Число перестановок с повторениями длины n из k разных элементов, взятых соответственно по n 1 , n 2 , …, n k раз каждый обозначается и вычисляется следующим образом:$$P_{n_1,n_2, ... , n_k}=\frac{n!}{n_1!n_2! ... n_k!}~.$$

    Например, сколько различных десятизначных чисел можно составить из цифр: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

    В данном случае: n = 10, n 1 = 1, n 2 = 2, n 3 = 3, n 4 = 4,$$P_{1, 2, 3, 4}=\frac{10!}{1!2! 3! 4!}=\frac{10!}{1!2! 3! 4!}=12~600.$$

    Ответ: 12 600.

    Размещения

    Размещением из n элементов по m (m ≤ n) m элементов, взятых в определённом порядке из данных n элементов.

    Два размещения из n элементов по m считаются различными, если они различаются самими элементами или порядком их расположения.

    Например, составим все размещения из четырёх элементов A, B, C, D по два элемента:

    A B; A C;A D;

    B A; B C; B D;

    C A; C В; C D;

    D A; D В; D C.

    Число всех размещений из n элементов по m обозначают \(A_n^m\) (читается: "А из n по m ") и вычисляется по любой из формул:$$A_n^m=n\cdot (n-1)\cdot (n-2)\cdot ...\cdot (n-m+1)\\A_n^m=\frac{n!}{(n-m)!}$$

    Примеры задач.

    1) Воспользуемся понятием размещений из n элементов по m для решения задачи, уже дважды рассмотренной ранее: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

    II I способ.

    Первую цифру можно выбрать четырьмя способами из набора 2, 4, 6, 8. В каждом из этих случаев количество пар второй и третей цифры равно числу размещений из 4 оставшихся цифр по 2. Значит искомое количество трёхзначных чисел равно:$$4\cdot A_4^2=4\cdot \frac{4!}{(4-2)!}=4\cdot \frac{4!}{2!}=4\cdot (3\cdot 4)=48.$$Ответ: 48.

    2) Для полёта в космос необходимо укомплектовать экипаж из шести человек. В него должны входить: командир корабля, первый и второй его помощники, два бортинженера, один из которых старший, и один врач. Командный состав выбирается из 20 лётчиков, бортинженеры — из 15 специалистов, а врач — из 5 медиков. Сколькими способами можно укомплектовать экипаж?

    Поскольку в выборе командного состава важен порядок, то командира и двух его помощников можно выбрать \(A_{20}^3\) способами. Порядок бортинженеров тоже важен, значит, для их выбора существует \(A_{15}^2\) способов. Врач всего один, для его выбора существует 5 способов. Воспользуемся комбинаторным правилом умножения и найдём количество возможных экипажей корабля:$$A_{20}^3\cdot A_{15}^2\cdot 5=\frac{20!}{17!}\cdot \frac{15!}{13!}\cdot 5=(18\cdot 19\cdot 20)\cdot (14\cdot 15)\cdot 5=7~182~000.$$Ответ: 7 182 000.

    Понятно, что, если m = n , то$$A_n^m=A_n^n=P_n=n!.$$

    Справедливо также, что, если m = n - 1 , то$$A_n^{n-1}=A_n^n=P_n=n!.$$

    Размещения с повторениями

    Помимо обычных размещений бывают и размещения с повторениями или выборки с возвращением .

    Пусть имеется n различных объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем под номером 1 его название, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был только что взят), запишем его название, пометив номером 2, и снова вернём объект обратно. И так далее, пока не получим m названий.

    Размещения с повторениями обозначаются \(\overline{A}_n^m\) и, согласно правилу умножения, вычисляются по формуле$$\overline{A}_n^m=n^m.$$Заметим, что здесь допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Это неудивительно: каждый объект после "использования" возвращается обратно и может быть использован повторно.

    Например, количество вариантов шестизначного пароля, в котором каждый знак является цифрой от 0 до 9 или буквой латинского алфавита (одна и та же строчная и прописная буква — один символ) и может повторяться, равно:$$\overline{A}_{10+26}^6=\overline{A}_{36}^6=36^6=2~176~782~336.$$Если же строчные и прописные буквы считаются различными символами (как это обычно и бывает), то количество возможных паролей становится ещё более колоссальным:$$\overline{A}_{10+26+26}^6=\overline{A}_{62}^6=62^6=56~800~235~584.$$

    Сочетания

    Сочетанием из n элементов по m (m ≤ n) называется любое множество, состоящее из m элементов, выбранных из данных n элементов.

    В отличии от размещений в сочетаниях не имеет значения, в каком порядке указаны элементы. Два сочетания из n элементов по m считаются различными, если они различаются хотя бы одним элементом.

    Например, составим все сочетания из четырёх элементов A, B, C, D по два элемента:

    A B; A C;A D;

    B C; B D;

    C D .

    Число всех сочетаний из n элементов по m обозначают \(C_n^m\) (читается: "C из n по m ") и вычисляется по любой из формул:$$C_n^m=\frac{A_n^m}{P_m}$$$$C_n^m=\frac{n\cdot (n-1)\cdot (n-2)~\cdot~ ...~\cdot~ (n-m+1)}{1\cdot2\cdot3~\cdot~...~\cdot ~m}$$$$C_n^m=\frac{n!}{m!\cdot (n-m)!}.$$

    Примеры задач.

    1) Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта физкультурного зала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

    Так как порядок маляров в каждой выбранной четвёрке и порядок плотников в каждой выбранной паре не имеет значения, то, согласно комбинаторному правилу умножения, искомое количество способов равно:$$C_{12}^4 \cdot C_5^2 =\frac{12!}{4!\cdot 8!}\cdot \frac{5!}{2!\cdot 3!}=\frac{9\cdot10\cdot11\cdot12}{1\cdot2\cdot3\cdot4}\cdot \frac{4\cdot5}{1\cdot 2}=4~950.$$Ответ: 4 950.

    2) В классе обучаются 30 учащихся, среди которых 13 мальчиков и 17 девочек. Сколькими способами можно сформировать команду из 7 учащихся этого класса, если в неё должна входить хотя бы одна девочка?

    Количество всех возможных команд по 7 человек из класса равно \(C_{30}^7\). Количество команд в которых только мальчики — \(C_{13}^7\). Значит, количество команд, в которых есть хотя бы одна девочка, равно:$$C_{30}^7 - C_{13}^7 =\frac{30!}{7!\cdot 23!} - \frac{13!}{7!\cdot 6!}=2~035~800-1~716=2~034~084.$$Ответ: 2 034 084.

    Сочетания с повторениями

    Помимо обычных сочетаний рассматривают сочетания с повторениями .

    Пусть в множестве имеется n объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был взят и записан ранее), запишем его название и снова вернём объект обратно. И так далее, пока не получим m названий.

    Принципиальное отличие от размещений с повторениями заключается в том, что в данном случае элементы списка не нумеруются. Например, список "A, С, A, В" и список "А, А, В, С" считаются одинаковыми.

    Сочетания с повторениями обозначаются \(\overline{C}_n^m\) и вычисляются по формуле$$\overline{C}_n^m=P_{m,~n-1}=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$И ещё один способ записи той же формулы:$$\overline{C}_n^m=C_{m+n-1}^m=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$Заметим, что подобно размещениям с повторениями, допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Действительно, каждый объект после "использования" возвращается обратно и может быть использован снова и снова.

    Например, выясним сколькими способами можно купить 7 пирожных в кондитерском отделе, если в продаже 4 их сорта?

    Естественно полагать, что количество пирожных каждого вида не меньше 7, и при желании можно купить только пирожные одного из них. Так как порядок в котором кладут купленные пирожные в коробку не важен, то имеем дело с сочетаниями с повторениями. Так как нужно выбрать 7 пирожных из 4 его видов, то искомое количество способов равно:$$\overline{C}_4^7=\frac{(7+4-1)!}{7!\cdot (4-1)!}=\frac{10!}{7!\cdot 3!}=\frac{8\cdot 9\cdot 10}{1\cdot 2\cdot 3}=120.$$

    Ответ: 120.

    Бином Ньютона и биномиальные коэффициенты

    Равенство$$(x+a)^n=C_n^0x^na^0+C_n^1x^{n-1}a^1+...+C_n^mx^{n-m}a^m+...+C_n^nx^0a^n$$называют биномом Ньютона или формулой Ньютона . Правая часть равенства называется биномиальным разложением в сумму , а коэффициенты \(C_n^0,~C_n^1,~...~,~C_n^n\) — биномиальными коэффициентами .

    Свойства биномиальных коэффициентов:

    \(~~~~~~~~1.~~C_n^0=C_n^n=1\\ ~~~~~~~~2.~~C_n^m=C_n^{n-m}\\ ~~~~~~~~3.~~C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\\ ~~~~~~~~4.~~C_n^0+C_n^1+C_n^2+~...~+C_n^n=2^n\\ ~~~~~~~~5.~~C_n^0+C_n^2+C_n^4+~... =C_n^1+C_n^3+C_n^5+~...=2^{n-1}\\ ~~~~~~~~6.~~C_n^n+C_{n+1}^n+C_{n+2}^n+~...~+C_{n+m-1}^n=C_{n+m}^{n+1}\\ \)

    Свойства биномиального разложения:

    1. Число всех членов разложения на единицу больше показателя степени бинома,

    то есть равно n + 1 .

    2. Сумма показателей степеней x и a каждого члена разложения равна показателю степени бинома,

    то есть (n - m) + m = n .

    3. Общий член разложения (обозначается T n +1 ) имеет вид$$T_{n+1}=C_n^m x^{n-m}a^m,~~~~m=0,~1,~2,~...~,~n.$$

    Треугольник Паскаля

    Все возможные значения биномиальных коэффициентов (числа сочетаний) для каждого показателя степени бинома n можно записать в виде бесконечной треугольной таблицы. Такая таблица называется треугольником Паскаля:






    \(C_0^0\)









    \(C_1^0\)

    \(C_1^1\)







    \(C_2^0\)

    \(C_2^1\)

    \(C_2^2\)





    \(C_3^0\)

    \(C_3^1\)

    \(C_3^2\)

    \(C_3^3\)



    \(C_4^0\)

    \(C_4^1\)

    \(C_4^2\)

    \(C_4^3\)

    \(C_4^4\)

    \(C_5^0\)

    \(C_5^1\)

    \(C_5^2\)

    \(C_5^3\)

    \(C_5^4\)

    \(C_5^5\)

    . . .



    . . .



    . . .

    В этом треугольнике крайние числа в каждой строке равны 1. Действительно, \(C_n^0=C_n^n=1\). А каждое не крайнее число равно сумме двух чисел предыдущей строки, стоящих над ним: \(C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\).

    Таким образом, этот треугольник предлагает ещё один (рекуррентный) способ вычисления чисел \(C_n^m\):

    n = 0








    1








    n = 1







    1

    1







    n = 2






    1

    2

    1






    n = 3





    1

    3

    3

    1





    n = 4




    1

    4

    6

    4

    1




    n = 5



    1

    5

    10

    10

    5

    1



    n = 6


    1

    6

    15

    20

    15

    6

    1


    n = 7

    1

    7

    21

    35

    35

    21

    7

    1

    n = 8
    1

    8

    28

    56

    70

    56

    28

    8

    1
    ...



    ...



    ...

    ...



    ...



    План:

    1. Элементы комбинаторики.

    2. Общие правила комбинаторики.

    4. Применение графов (схем) при решении комбинаторных задач.

    1. Комбинаторика и ее возникновение.

    Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

    Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

    Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

    Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

    Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

    Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

    2. Общие правила комбинаторики.

    Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

    Примеры:

    1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

    Ответ: n способами.

    Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

    Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

    2. Морской семафор.

    В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

    Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

    Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

    Примеры:

    1. Сколько двузначных чисел существует?

    Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

    2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

    Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

    3. Генеральная совокупность без повторений и выборки без повторений.

    Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

    Пример: Набор из n разноцветных лоскутков.

    Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

    Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

    Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

    - число размещений из n по k .

    Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


    Преобразовав данную формулу, имеем:

    Следует помнить, что 0!=1.

    Примеры:

    1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

    Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

    2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

    Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

    Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

    Число перестановок.

    Примеры:

    1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

    Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
    Решение:
    Имеем перестановки из 6 элементов.

    Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

    - число сочетаний из n по k

    Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

    1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

    Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

    2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

    Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

    Конспект:




    4.Применение графов (схем) при решении комбинаторных задач.

    В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

    Задача:

    При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

    Решение:

    Составим соответствующее «дерево».






    Ответ: 10 комбинаций.

    Такое дерево является графом и применяется для решения комбинаторных задач.

    © 2024 ongun.ru
    Энциклопедия по отоплению, газоснабжению, канализации